Approaches to Difficult Aerospace Telecommunications Links

Joseph Ishac
jishac@nasa.gov
NASA Glenn Research Center
What qualifies as a “Difficult Link”

- Straightforward issues
 - Low Capacity
 - High Latency
 - High Losses
 - Low Reliability

- More complex situations
 - Multiple links between endpoints
 - Reordering
 - Asymmetric links

Image Credit: Cmglee, Geo Swan
Formidable Links and Where to Find Them

- Yes, they do exist!

- Two frequent sources
 - As a result of physical environment
 - As a result of sharing spectrum
 - Highly contentious, sparse resource
 - Number of expected users
 - Licensed vs Unlicensed

- Examples
 - Satellite links, Deep Space Links
 - Command and Control Links
What makes these links so difficult for the network and users?

• Network protocols are designed to provide certain features/functions
 - TCP: Reliable, In-Order Data Stream (and other features)
• These protocols employ different methods to work
 - TCP: Connections, relies on feedback for control
• A protocol can suffer issues with certain link conditions
 - TCP: Does not do well with very high losses or high delay…
• Solutions introduce trade-offs, attempts to re-insert functionality
 - TCP not viable: Use UDP?
Network Layers

- TCP example shows impacts to the transport layer
- Switching from TCP to UDP impacts the application layer
 - Rewriting code
 - Need to pay attention to best practices – RFC 8085
- Protocols at all layers are impacted by these links

<table>
<thead>
<tr>
<th>Application</th>
<th>Transport</th>
<th>Internet</th>
<th>Data Link</th>
<th>Physical</th>
</tr>
</thead>
</table>

- Layer abstraction?
- How do we keep our links fully utilized and efficient?
Another Issue: Too many solutions

- Smart folks have thought up a lot of different solutions
 - Alphabet Soup of Solutions: DTN, MPTCP, DCCP, SCTP, ROHC, …
 - Solutions at every layer...
- Some users re-invent functionality
 - Check out my new custom Protocol Z over UDP for …
- So there are a lot of solutions – and that is a problem
 - Usually not a single solution that solves all the users problems
 - May not stack cleanly: Are at odds with each other in some way
 - Actually introduce other issues or complications
 - Almost always end up with security implications
Issue #1: Low Capacity

<table>
<thead>
<tr>
<th>Media</th>
<th>Capacity</th>
<th>Time to process a single 1500 byte packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet</td>
<td>1,000,000,000 bits/s</td>
<td>0.000012 s</td>
</tr>
<tr>
<td>Average Cellular 4G LTE</td>
<td>30,000,000 bits/s</td>
<td>0.000400 s</td>
</tr>
<tr>
<td>Dial-Up 56K Modem</td>
<td>56,000 bits/s</td>
<td>0.214286 s</td>
</tr>
<tr>
<td>UAS Mode D Control</td>
<td>34,400 bits/s</td>
<td>0.348837 s</td>
</tr>
<tr>
<td>UAS Mode A Control</td>
<td>4,680 bits/s</td>
<td>2.564103 s</td>
</tr>
<tr>
<td>Iridium® Modem</td>
<td>2,400 bits/s</td>
<td>5.000000 s</td>
</tr>
</tbody>
</table>
Network Overhead vs. Capacity

- Brief summary of Unmanned Systems in the National Airspace Goals
 - Design future proof network [IPv6]
 - Ground operators can reach a mobile platform [Mobile IPv6]
 - Communications are secured [IPsec, ESP, AH]
 - Small unidirectional data messages [UDP]

Network Headers alone total 117 bytes!
Low Capacity Potential Solutions

- Header Compression [ROHC]
 - Can significantly shrink headers. For example, 80 bytes to just 2
 - Impacted by how and when encryption is done
 - Risk of increased loss depending on what you compress

- Shrink TCP Initial Congestion Window
 - RFC 3390 (4K) and RFC 6928 (10 segments) are over sized
 - Troublesome if links have a large range of performance

- Waiting for faster links is not a solution [Moore’s Law]
 - Iridium® first available in November 1998 (20 years later!)
 - UAS CNPC links being designed now for 2020 and beyond.
Issue #2: Latency

<table>
<thead>
<tr>
<th>Media</th>
<th>Approximate Distance</th>
<th>One Way Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Network</td>
<td>100 m</td>
<td>< 0.001 s</td>
</tr>
<tr>
<td>Coast-to-Coast</td>
<td>4,000 km</td>
<td>0.030 s</td>
</tr>
<tr>
<td>Trans-Atlantic</td>
<td>4,600 km</td>
<td>0.035 s</td>
</tr>
<tr>
<td>Low Earth Orbit</td>
<td>781 km</td>
<td>0.003 s</td>
</tr>
<tr>
<td>Geosynchronous Orbit</td>
<td>35,786 km</td>
<td>0.120 s</td>
</tr>
<tr>
<td>Moon</td>
<td>384,402 km</td>
<td>1.282 s</td>
</tr>
<tr>
<td>Mars (Near) [2018-07-27]</td>
<td>57,774,698 km</td>
<td>(> 3 min) 192.716 s</td>
</tr>
<tr>
<td>Mars (Far)</td>
<td>401,000,000 km</td>
<td>(> 22 min) 1337.592 s</td>
</tr>
</tbody>
</table>
Latency Factors

- Iridium® One-Way Delay is about 750 ms or larger (not 3 ms)
 - Delay impacted by more than just range or line-of-sight
 - Processing, encoding, satellite-satellite routing, ground station location
Latency Potential Solutions

• Can change the propagation speed to a point
 – Different mediums propagate faster… doesn't help for space

• Smarter queue management [SFQ, RED, AQM]
 – Gives feedback on congestion to all flows
 – Keep queuing delays to a minimum

• Shrink MTU
 – Increases responsiveness and fairness between flows
 • Oh yeah, it’s not just us out there.
 – Risk of fragmentation [PMTUD]

• Rate Limiting
Fair, Rate-Limited, Head Drop Queues

Network Interface

One token added every N seconds
Max Fill

Queue added for each new connection

Segment released every N seconds
Initial Burst

Tail Drop Queuing
4 + 3 2 1 = 3 2 1

Head Drop Queuing
4 + 3 2 1 = 4 3 2

Which is better for TCP?
Issue #3: High Losses

- Wireless data transmission is prone to errors
 - Bit flips, bit insertion, bit loss…
 - Quality can vary depending on conditions (ie: weather) and distance
 - Erred data packets are usually discarded on reception

- Mistaking delays for loss
 - Iridium® one way minimum delay of roughly 750 ms (1.5 s round trip)
 - RFC 6298 (TCP retransmit timer) reduces initial timeout to 1 seconds
 - Unnecessary retransmissions are costly (due to low capacity)
 - Protocols such as TCP suffer, mistaking loss for congestion
High Losses Potential Solutions

- Use of Forward Error Correction (FEC) [Reed-Solomon, LDPC]
 - Usually applied to the link – Corrects errors “in-flight”
 - Stronger encoding/decoding usually takes longer
 - Adds latency

- Accurate or longer timers
 - Hard problem to balance responsiveness and accuracy
 - Sometimes changing system defaults are hard
 - RFC 6298 timeout of 1 second is hard coded into the Linux kernel
 `#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))`
Issue #4: Low Reliability

- In addition to losses, links may fail completely
 - Out of range
 - Loss of coverage
 - Lack of resources
- Transitions may be frequent
- What does that mean for:
 - Protocols
 - Connections
 - State
Iridium® Link Transitions

- **Flight Date:** November 18, 2016
- **Flight Duration:** 13 Hours
- **Events that changed the number of active links:**
 - 325 (25 changes / hour)
- **Nearly one fourth of the flight is in a degraded state**

<table>
<thead>
<tr>
<th>Number of Active Links</th>
<th>Seconds</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>35643</td>
<td>76.26%</td>
</tr>
<tr>
<td>3</td>
<td>8269</td>
<td>17.69%</td>
</tr>
<tr>
<td>2</td>
<td>1969</td>
<td>4.21%</td>
</tr>
<tr>
<td>1</td>
<td>235</td>
<td>0.50%</td>
</tr>
<tr>
<td>0</td>
<td>624</td>
<td>1.34%</td>
</tr>
</tbody>
</table>
Low Reliability Potential Solutions

- Adaptive modulation to increase range
 - Capacity decreases
- Use multiple or alternate connections
- Typical Iridium® usage will deploy 4 or more modems
 - Currently 4 channels are used to provide a total of 9.6 Kbit/s
 - Decreases probability of having no links available
 - In the flight example, only 1.34% of the flight had no connection
- Unfortunately multiple links create their own set of issues
Issue #5: Multiple links between endpoints

- N-times the same type of link or Multiple types of links
 - Often used to increase capacity or used as a fail over
 - Appears at N interfaces
 - Example: Wi-Fi + Cell
 - Example: Iridium®
 - Image shows 4 modems
- Hard managing data over multiple streams
Multiple Links Potential Solutions

- **Link Level Bonding**
 - Appears as one physical interface
 - Hides issues from other layers
 - TCP reacting to losses isolated on only a single bad link

- **Bonding at Upper Layers**
 - Identify and isolate link issues
 - More complex state
 - Solution not as universal
 - MPTCP good for TCP only

<table>
<thead>
<tr>
<th>Application</th>
<th>Web Requests, Internet Relay Chat, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>TCP</td>
</tr>
<tr>
<td>Network</td>
<td>IP</td>
</tr>
<tr>
<td>Data Link</td>
<td>MLPPP</td>
</tr>
<tr>
<td></td>
<td>PPP</td>
</tr>
</tbody>
</table>

| Web Requests, Internet Relay Chat, etc. |
| MPTCP |
TCP	TCP	TCP	TCP
IP	IP	IP	IP
PPP	PPP	PPP	PPP
Issue #7: Asymmetric links

- Links are not always the same capacity in each direction
 - Similar to how home internet has different upload and download speeds
- Satellite links can have large down-link to up-link ratios
 - Further exaggerated by long delays
- Really impacts protocols such as TCP
 - May limit the TCP ACK stream and overall rate
 - Feedback constrained on return channel
- Possible Solutions
 - Different types of feedback algorithms or mechanics [NACKs]
 - Unidirectional communication
Issue #6: Reordering

• Reordering does happen
 - Multiple links (Dumping a queue on a failed link)
 - Multiple paths
 - Changing delays
 - Even a single link is not immune

• Possible Solutions
 - Use protocols that have a mechanism to deal with reordering (like TCP)
 - Handle ordering in the application
 - Is order even important? May not be to some applications
 - Request: Please do not assume in-order delivery (even in slides)
Thank you

Questions?
Backup Slides
Glossary of Terms and References (In order of appearance)

- Iridium® - https://www.iridium.com/
- GPS – Global Positioning System
- ISS – International Space Station
- UAS – Unmanned Aircraft Systems
- ATC – Air Traffic Control
- TCP – Transmission Control Protocol
- UDP – User Datagram Protocol
- RFC 8085 - UDP Usage Guidelines
- DTN – Delay/Disruption Tolerant Networking
- MPTCP – MultiPath Transmission Control Protocol
- DCCP – Datagram Congestion Control Protocol
- SCTP – Stream Control Transmission Protocol
- ROHC – Robust Header Compression
- IPv6 – Internet Protocol Version 6
- IPsec – Internet Protocol security
- ESP – Encapsulating Security Payload
- AH – Authentication Header
- RFC 3390 – Increasing TCP's Initial Window
- RFC 6928 – Increasing TCP's Initial Window
- SFQ – Stochastic Fairness Queuing
- RED – Random early detection
- AQM – Active Queue Management
- MTU – Maximum Transmission Unit
- PMTUD – Path MTU Discovery
- RFC 6298 – Computing TCP’s Retransmission Timer
- FEC – Forward Error Correction
- Reed-Solomon
- LDPC – Low Density Parity Checks
- NACK – Negative Acknowledgments