AM in Space: ISM and IRMA NASA Initiatives

R.G. Clinton Jr., PhD
Associate Director
Science and Technology Office
NASA Marshall Space Flight Center

Made For Space
May 2 - 3, 2019
Manufacturing Technology Centre
Coventry UK
Acknowledgements

Contributors

• Niki Werkheiser: NASA MSFC In Space Manufacturing, Program Manager
• Dr. Tracie Prater: NASA MSFC In Space Manufacturing, Materials Characterization Lead
• Dr. Frank Ledbetter: NASA MSFC In Space Manufacturing, Subject Matter Expert
• Tawnya Laughinghouse: NASA MSFC Technology Demonstrations Missions Level II Acting Program Office Manager
• Charlie Adams: NASA MSFC Technology Demonstrations Missions, IRMA Mission Manager
• Trey Clinton: Made In Space, AMF
• Paul Shestople: Made In Space, Archinaut
• John Lymer: Space Systems Loral, Dragonfly
1. Why In Space Manufacturing (ISM)

2. NASA’s In Space Manufacturing Initiative
 A. ISM Path to Exploration – Key Thrust Areas

3. NASA’s In Space Robotic Manufacturing and Assembly (IRMA) Technology Demonstration Missions
 A. Archinaut
 B. Dragonfly

4. 3D Printed Habitat Challenge

5. Summary
The Case for ISM: Why we need this capability

Current maintenance logistics strategy will not be effective for deep space exploration missions

Benefits from Incorporation of ISM

ISM offers the potential to:

- Significantly reduce maintenance logistics mass requirements
- Enable the use of recycled materials and in-situ resources for more dramatic reductions in mass requirements
- Enable flexibility, giving systems a broad capability to adapt to unanticipated circumstances
- Mitigate risks that are not covered by current approaches to maintainability
ISM Path to Exploration - Key Thrust Areas

- FabLab: MSFC
- First Plastics Printer: Made In Space
- 2nd Generation Plastics Printer: Made In Space
- Printed Electronics: MSFC
- Recycler/Printer: Tethers Unlimited
- Health & Medical: Tethers Unlimited
- Common Use Recyclable Materials: Cornerstone Research Group
- UltraTech
- Tethers Unlimited
- Techshot
The 3D Printing in Zero G Technology Demonstration Mission (Phase 1)

The 3DP in Zero G Tech Demo delivered the first 3D printer to ISS and investigated the effects of consistent microgravity on fused deposition modeling.

Phase I Prints (Nov-Dec 2014): mechanical property test articles; range coupons; and functional tools

Key Observations:
- Tensile and Flexure: Flight specimens stronger and stiffer than ground specimens
- Compression: Flight specimens are weaker than ground specimens
- Density: Flight specimens slightly more dense than ground specimens; compression specimens show opposite trend
- Structured Light Scanning: Protrusions along bottom edges (more pronounced for flight prints)
- Microscopy: Greater Densification of Bottom Layers (flight tensile and flexure)

Conclusions
- Z-Calibration distance variation suspected to be primary factor driving differences between flight and ground samples
- Potential influence of feedstock aging are being evaluated further
Key Results: The 3D Printing in Zero G Technology Demonstration Mission (Phase II)

- **Phase II Prints:**
 - 25 specimens (tensile + compression) built at an optimal extruder standoff distance.
 - 9 specimens printed with *intentionally decreased extruder standoff distance* to mimic Phase I flight process conditions.

- **Key findings:**
 - No substantive chemical changes in feedstock.
 - No evidence of microgravity effects noted in SEM, SLS, CT analysis. Some internal structure variation between builds and with changes in process settings (primarily compression).
 - All prints to date with 3DP appear to be broadly part of the same family of data.
 - Phase I data variations appear traceable to:
 - *Differences in manufacturing process settings (extruder standoff distance)*
 - Data scatter - characteristic of many additively manufactured materials and processes.
 - Printer variability.

Cross-section of PII tensile specimen manufactured at optimal extruder setting (left) compared with specimen manufactured at a reduced extruder standoff distance (right). Right image has a cross-section characteristic with PI flight prints.

<table>
<thead>
<tr>
<th>Specimen set</th>
<th>Average ultimate tensile strength (KSI)</th>
<th>Coefficient of variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase II</td>
<td>3.68</td>
<td>6.71</td>
</tr>
<tr>
<td>Phase II optimal</td>
<td>3.63</td>
<td>6.61</td>
</tr>
<tr>
<td>Phase II off-suboptimal</td>
<td>3.93</td>
<td>0.07</td>
</tr>
<tr>
<td>Phase I ground</td>
<td>3.46</td>
<td>1.71</td>
</tr>
<tr>
<td>Phase I flight</td>
<td>4.04</td>
<td>5.95</td>
</tr>
</tbody>
</table>

Overall, we cannot attribute any of the observations to microgravity effects.
ISM Utilization and the Additive Manufacturing Facility: Material Characterization and Example Functional Parts

- Additive Manufacturing Facility (AMF), the second generation printer, is a commercial, multi-user facility developed by Made in Space, Inc.
- Upgrades beyond 3DP include:
 a) Print with multiple material (ABS, ULTEM 9085, and HDPE)
 b) Integral cameras/sensors for automated monitoring
 c) Maintenance procedures reduce crew time
 d) Leveling and calibration with on-board systems
- Materials characterization task developing baseline mechanical properties on ABS (test matrix below)

<table>
<thead>
<tr>
<th>AMF Mechanical Property Test Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type, Orientation</td>
</tr>
<tr>
<td>Tension, 0</td>
</tr>
<tr>
<td>Tension, 90</td>
</tr>
<tr>
<td>Compression, 0</td>
</tr>
<tr>
<td>Compression, 90</td>
</tr>
<tr>
<td>Tension, +/-45 (shear)</td>
</tr>
<tr>
<td>Flatwise tension</td>
</tr>
<tr>
<td>Range coupon</td>
</tr>
<tr>
<td>EMU fan cap</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Mission Goal of Refabricator
Demonstrate how the integrated polymer Recycler/3D Printer can increase mission sustainability by providing a repeatable, closed-loop process for recycling plastic materials/parts in the microgravity environment into useable feedstock for fabrication of new and/or different parts.

- Technology Demonstration Mission conducted under SBIR contract with Tethers Unlimited, Inc. (TUI)
- Refabricator is an integrated 3D printer (FDM) which recycles ULTEM plastic into filament feedstock through a novel TUI process which requires no grinding.
- Designed to be self-contained and highly automated.
- Installation and activation on the ISS EXPRESS Rack on 2/14/19

Refabricator (Top) and Printed Parts (Bottom)
The 1st Generation Exploration Recycler will include a 3D Printer, Recycler, and dry-heat Sterilizer to fabricate and recycle polymer parts, including food and medical-grade items which make up a high percentage of trashed materials on the ISS. This effort is underway through a Phase II SBIR entitled “ERASMUS” with TUI. Refabricator design and testing is informing the ERASMUS activity.

- ISM is working with the AES Logistics Reduction (LR) team at JSC for application cases.
- TUI digitally reconstructed the NASA-provided urine funnel drawing and made adaptations in order to better support its manufacturability.
- ERASMUS also addresses food (i.e. spoon), medical device (i.e. otoscope specula, finger splint), and specimen production.
- Prototypes are provided to the JSC Logistics Reduction team for further testing and analyses.
- Next Steps:
 - Evaluate process-induced degradation and re-use capabilities.
 - Develop a medical device 3D printing and sanitization process.
 - Part production and customization.
 - Breadboard-level verification of the complete ERASMUS process.
Common Use Materials Development - Recyclable Materials: SBIR Activities

- Logistics analyses indicate a dramatic impact of recycling capability to reduce initial launch mass requirements for long duration missions
 - Current packaging materials for ISS represent a broad spectrum of polymers: LDPE, HDPE, PET, Nylon, PVC

- Tethers CRISSP (Customizable Recyclable ISS Packaging) seeks to develop common use materials (which are designed to be recycled and repurposed) for launch packaging (Phase II-E SBIR)
 - Recyclable foam packaging made from thermoplastic materials using FDM
 - Can create custom infill profiles for the foam to yield specific vibration characteristics or mechanical properties

- Cornerstone Research Group (CRG) is working under a Phase II-E SBIR on development of reversible thermoset copolymer materials
 - Designs have strength and modulus values comparable to or exceeding base thermoplastic materials
 - Maintains depressed viscosity so that materials are compatible with FDM
In-Space Metal Additive Manufacturing Capability: SBIR Activities

- Made in Space Vulcan unit (Phase II SBIR)
 - Integrates FDM head derived from AMF
 - Wire and arc metal deposition system
 - CNC end-mill for part finishing
- Ultra Tech Ultrasonic Additive Manufacturing (UAM) system (Phase II SBIR)
 - Uses sound waves to consolidate layers of metal from foil feedstock
- TUI MAMBA (Metal Advanced Manufacturing Bot-Assisted Assembly) (Phase II SBIR)
 - Ingot-forming method to process virgin or scrap metal.
 - Builds on Refabricator recycling process
 - Bulk feedstock is CNC milled
- Techshot, Inc. SIMPLE (Sintered Inductive Metal Printer with Laser Exposure) (Phase II-E SBIR)
 - AM process with metal wire feedstock, inductive heating, and a low-powered laser
Multi-Material Fabrication With Printed Electronics

- **Objective:** Evaluate and develop technologies to enable multi-material, on-demand digital manufacturing of components for sustainable exploration missions.
- **Working with multiple NASA centers, industry (including small businesses), academia, and Other Government Agencies (OGAs).**
- **Sensor Development:**
 - Piezoelectric/pyroelectric-based combination pressure/temperature sensor.
 - Wearable RFID sensors.
 - Sensors to detect \(\text{NH}_3 \), \(\text{CO}_2 \), \(\text{CO} \), \(\text{CH}_4 \), \(\text{H}_2 \), and humidity.
- **Ink Development**
 - Inconel 718
 - Aluminum and Aluminum-tin
 - **Carbon-carbon-polymer** composite ink
 - Palladium-silver electrode ink
- **Develop power sources to run the sensors (triboelectric) and store energy (supercapacitors) to build a self-contained system.**
- **Develop Flexible Electronics Sensors including the development of a flexible sensor circuit with flexible components**
Phase A (18 months)
Goal: Demonstrate a scalable ground-based PROTOTYPE of an ISM FabLab System able to mature into flight demonstrations on the ISS within three years.

Phase B (12 months)
Goal: Mature the Phase A ISM FabLab System prototype into a flight integration deliverable. Phase B criteria and needed path are informed by Phase A results and will be released under a follow-on BAA.

Phase C (18 months)
Goal: Demonstrate the capability of a Phase B ISM FabLab System on the ISS and evaluate risk. Phase C criteria are informed by Phase B results and will be released as a follow-on BAA or other acquisition vehicle.

WE ARE HERE!

NASA solicited proposals for the development of a Multi-Material Fabrication Laboratory (FabLab) capable of end-to-end manufacturing of precision parts for sparing, repair, and logistics support during space missions.

- High degree of autonomy
- On-demand manufacturing of metallics and other materials in the microgravity environment
- Minimum build envelope of 6”x6”x6”
- Earth-based remote commanding
- In-line remote/autonomous inspection and quality control

This is the first step toward a fully-integrated, on-demand manufacturing capability that is able to produce finished, ready-to-use metallic, plastic, and/or electronic products during Exploration missions.

The Phase B solicitation will be openly competed and is anticipated to be released late in CY 2019.
NextSTEP FabLab: Phase A Selectees

“The Techshot FabLab” - Techshot, Inc. (Greenville, IN)
Partners: nScrypt, TM Vacuum Products, University of Louisville, VITO

“Microgravity Multiple Materials Additive Manufacturing (M3AM) Technology” - Interlog (Anaheim, CA)
Partners: Argonne National Labs, Micro Aerospace Solutions, Illinois Institute of Technology

“Empyrean- Sustainable, In-Space Fabrication Laboratory for Multiple Material Manufacturing, Handling, and Verification/Validation” - Tethers Unlimited, Inc. (Bothell, WA)
Partners: IERUS, Olis Robotics

- These companies will have 18 months to deliver the prototype, after which NASA will select partners to further mature the technologies for an ISS demonstration and 1st generation Exploration system.
In-space Robotic Manufacturing and Assembly (IRMA): Phase 1 Concepts

<table>
<thead>
<tr>
<th>Concept by Made In Space</th>
<th>Concept by Space Systems/Loral</th>
<th>Concept by Orbital ATK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archinaut</td>
<td>Dragonfly</td>
<td>CIRAS</td>
</tr>
<tr>
<td>A Versatile In-Space Precision Manufacturing and Assembly System</td>
<td>In-Space Robotic Manufacturing, Assembly and Reconfiguration of Large Solid Radio Frequency (RF) Reflectors</td>
<td>A Commercial Infrastructure for Robotic Assembly and Services</td>
</tr>
</tbody>
</table>

Tipping Point Objective

- A ground demonstration of additive manufacturing of extended structures and assembly of those structures in a relevant space environment.
- A ground demonstration of robotic assembly interfaces and additive manufacture of antenna support structures meeting EHF performance requirements.
- A ground demonstration of reversible and repeatable robotic joining methods for mechanical and electrical connections feasible for multiple space assembly geometries.

Team

- Made In Space, Northrop Grumman Corp., Oceaneering Space Systems, Ames Research Center
- Space Systems/Loral, Langley Research Center, Ames Research Center, Tethers Unlimited, MDA US & Brampton
- Orbital ATK, Glenn Research Center, Langley Research Center, Naval Research Laboratory

Status: 2-year risk reduction developments completed. Phase 2 proposals selected for flight demo.
Made In Space (MIS)
Archinaut – Overview and Phase I Accomplishments

Vision:
- System that is able to robotically create spacecraft or extremely large structures in space which reduces spacecraft cost, reduces limitations rocket launch places on spacecraft design (launch loads and volumes), and removes astronauts from harm’s way.

Objectives:
- Demonstrate extended structure additive manufacturing of structures in a relevant environment using Extended Structure Additive Manufacturing Machine (ESAMM).
- Demonstrate additive manufacturing and robotic assembly of structures, as well as in-situ V&V in a relevant environment using Ground-Based Manufacturing and Assembly System Hardware (GBMASH).
- Evaluate part quality through mechanical and structural testing.

- July 2017: Successfully demonstrated additive manufacturing in a simulated LEO environment (NASA Ames).
- August 2017: Printed “World’s longest 3D printed non-assembled piece” (37.7 meters)
- August 2018: Successfully demonstrated GBMASH in Thermal Vacuum chamber (NG Space Park)
Objectives:
- Continue success of ESAMM and GBMASH to build ArchinautOne
 - Small satellite with best in class power capability
 - Operate in LEO
 - ESAMM unit will produce 2x 10 m beams which support 10 m² flexible solar panels each
 - Robotic arm will position vital components
 - In-situ V&V ensures quality product

Demonstration of small satellite with >2kW power
SSL Dragonfly: Overview

The SSL Dragonfly project is developing critical technologies to enable In-space Robotic Manufacturing, Assembly and Reconfiguration of Large Solid RF antennas. These technologies will enable commercial and government customers to deploy:

- larger apertures for greater coverage, throughput and mission enabling optics,
- reconfigurable apertures for mission versatility, and
- re-buildable apertures for resilience and persistence in contested environments.

The SSL Dragonfly project is developing critical technologies to enable In-space Robotic Manufacturing, Assembly and Reconfiguration of Large Solid RF antennas. These technologies will enable commercial and government customers to deploy:

- larger apertures for greater coverage, throughput and mission enabling optics,
- reconfigurable apertures for mission versatility, and
- re-buildable apertures for resilience and persistence in contested environments.

The Dragonfly Robotic System is an ultra-lightweight robot that integrates easily with commercial and government communications satellites to assemble large reflectors in orbit. The Modular Antenna Assembly concept scales to very large solid apertures with higher performance and at a fraction of the cost of deployable mesh antennas.
Dragonfly Builds on State of the Art Flight Heritage

Advanced arm control and force regulation software from ISS robotics

Super-light Actuators, booms and cables from Mars Phoenix and MER IDD

Dragonfly Robotic System ‘walks’ end-over-end around a large GEO CommSat to assemble a suite of antennas from a stack launched on the Earth Deck

Image guidance and Supervised Autonomy from advanced neurosurgical robotics

3D graphics based planning, automatic script generation and end effector from Orbital Express Mission

Dragonfly at a glance:
- 5m, 7 DoF, double ended symmetrical arm
- fully redundant, arm mounted avionics with control software and image processing
- all-in mass of 76kg
Dragonfly Accomplishments and Plans

Phase 1 Accomplishments
- Robot system design to CDR level
- High vacuum testing of in-space manufacturing of thermally stable, high stiffness truss elements made of carbon fiber reinforced PEEK
- Robot system interfaces that integrate “lightly” with existing spacecraft C&DH and low rate Command/Telemetry links
- Operating concept suited to commercial MCC protocols and staffing

Phase 2 Plans
- Prepare robot system for demonstration flight on NASA’s Restore-L mission in LEO
- Assemble a 3m version of the modular antenna and perform optical and RF metrology using a Ka band link
- Fabricate a very long (~30m) boom made of carbon fiber reinforced PEEK and perform metrology for dynamics, fabrication tolerances, and thermal stability
NASA’s 3D-Printed Habitat Challenge is a competition to design and print habitats that could house humans as they live and work in space and here on Earth.

www.nasa.gov/3DPHab

Phase 1: Design Competition
Completed Sept. 2015
$40,000 awarded

1st Place: SEArch and Clouds AO

2nd Place: Gamma

3rd Place: LavaHive

Phase 2: Structural Member Competition
Completed 9/2017
$701,024 awarded

1st Place: Foster + Partners | Branch Technology

2nd Place: Pennsylvania State University

Phase 3: Structural Member Competition
Ongoing; 5 sub-levels
$100,000 awarded to date

Level 1 BIM 1st Place: Zopherus

2nd Place: AI. SpaceFactory
In Space Manufacturing has been described as an "essential technology for deep space exploration." (former Director, NASA ISS Program)

Evolvable Mars Campaign Systems Analysis Group concluded from their study of ISM Utilization for deep space missions that:
- Current maintenance logistics strategy will not be effective for deep space missions
- ISM has the potential to significantly reduce maintenance logistics mass requirements by enabling material commonality and the possibility of material recycling and ISRU for spares
- ISM should be considered and developed in parallel with the systems design

MSFC is actively working with industry partners to develop ISM capabilities:
- **Within Pressurized Volume**: Reduce logistics challenges. Keep astronauts safe and healthy in transit and on extraterrestrial surfaces (tools; spares; food-safe and medical-grade applications)
- **External/Free Space - IRMA**: Add new commercial capabilities in spacecraft construction, assembly, and repair in LEO
- **3D Habitat Challenge/Additive Construction**: Enable infrastructure to be robotically constructed prior to arrival of astronauts on the extraterrestrial surface, Moon or Mars.
Three FabLab Phase A teams

- Developing technologies for part inspection and process monitoring
- Remote/autonomous commanding
- Feedback and control
- *Note: Capability and approach is being initiated in Phase A, and will be more fully developed in Phase B awards*

Five SBIR Phase I awards

- Maturing low TRL complementary inspection and monitoring technologies
- In-line and/or *in situ* capabilities
- Possible infusion into FabLab Phase B proposals