James Webb Space Telescope
Optical Telescope Element / Integrated Science Instrument Module (OTIS)
Cryogenic Vacuum Test

Part I: Thermal Architecture

Kan Yang
NASA Goddard Space Flight Center
Introduction to the JWST OTIS CV Test Lecture Series

- This lecture series discusses the cryogenic vacuum (CV) testing of the James Webb Space Telescope (JWST) Optical Telescope Element / Integrated Science Instrument Module (OTIS)[1,2] from July – October, 2017 at NASA Johnson Space Center.

- There are four parts to this series:
 - Part I: Thermal Architecture
 - Part II: Thermal Analysis
 - Part III: Preparations for Off-Nominal Events
 - Part IV: Lessons Learned

- Objectives of this lecture series:
 - Familiarize the audience with the James Webb Space Telescope architecture
 - Understand the thermal challenges to executing the most complex cryogenic vacuum test ever undertaken by NASA
 - Act as a guideline for planning future system-level thermal vacuum tests for large cryogenic missions
The James Webb Space Telescope: Introduction

- Upon launch in 2021, the James Webb Space Telescope will become the world’s most powerful general-purpose space observatory
 - Scientific successor to the Hubble Space Telescope
 - Optimized to observe in near-to-mid infrared wavelengths (0.6 – 28 μm)

JWST Full-scale model at SXSW in Austin, TX, 2013. Image source: NASA/JWST
JWST vs. Hubble Primary Mirror Comparison

- JWST’s primary mirror is 6.5 m in diameter and has 25 m² of light-collecting area
 - This is powerful enough to see the heat of a bumblebee on the moon from Earth!
- By comparison, the Hubble Space Telescope’s primary mirror is 2.4 m in diameter with 4.5 m² of light-collecting area

Source: NASA/JWST
JWST Science [3]

First Light and Reionization

Planetary Systems and the Origins of Life

Assembly of Galaxies

Birth of Stars and Protoplanetary Systems

Sources:
- NASA/WMAP
- NASA/JPL-Caltech
- NASA/ESA
- ALMA Observatory
Major System-Level Assemblies of the James Webb Space Telescope

- Optical Telescope Element (OTE)
- Integrated Science Instrument Module (ISIM)
- Sunshield
- Spacecraft Bus

OTE + ISIM = “OTIS”

Source: NASA/JWST
Completed “OTIS” Element at NASA Goddard Space Flight Center SSDIF Clean Room

Source: NASA/JWST
Thermal Environment in Flight

Source: svs.gsfc.nasa.gov

Sun-facing side (hot)
- Sunshield layer 1: > 350 K

Deep space-facing side (cold)
- Sunshield layer 5: < 50K

5-layer Sunshield

IEC warm electronics compartment (~278 K)

Near-Infrared instruments (NIRSpec, NIRCam, FGS/NIRISS): 35-42 K

Mid-Infrared Instrument (MIRI): 6K (actively cooled)

1 million miles

Earth

Source: svs.gsfc.nasa.gov
OTIS CV Thermal Test Objectives [4]

- Preserve hardware integrity upon transition to cryogenic thermal balance (cryo-balance) conditions and transition back to ambient temperatures by respecting all imposed limits and constraints (L&Cs)
- Achieve the simulated on-orbit payload temperature levels and stability for optical, mechanical, and instrument tests
- Predict and measure thermal balance test data for model crosscheck, both on ISIM and OTE components
- Achieve a workmanship thermal conductance assessment of the flight instrument heat straps which for the first time would be connecting all the payload flight instruments and radiators
- Achieve test timeline optimization by executing the OTIS CV cooldown and warmup in a time-efficient manner
What’s the Importance of Thermal Vacuum Testing?

Thermal testing is done in a vacuum chamber at *margined* temperature extremes and is designed to verify workmanship, demonstrate performance, and collect data to be used in correlating thermal models.

Two types of testing are performed:

Thermal balance plateaus: thermal environment is set, and spacecraft must achieve energy balance with environment. Balance criteria met from achieving temp. rate-of-change requirement on components. Thermal data collected is used to verify predictive accuracy of thermal models.

Thermal vacuum cycles: Quality assurance test to take hardware beyond its operational temperatures and ensure it will survive temperature extremes: used to verify workmanship on components.
What Are Our Temperature Goals on OTIS?

+V1 Side

- **Secondary Mirror**: 19-54 K
- **Primary Mirrors**: 32-59 K
- **Interface with Spacecraft Bus**: 295 K (Plus surfaces to simulate backloading from the sunshield)

-V1 Side

- **Near-Infrared Instruments and Instrument Radiators**: 35 K – 42 K
- **Mid-Infrared Instrument**: 6 K
- **ISIM Electronics Compartment**: 278 K - 288 K

Image sources: NASA/JWST
How Do We Replicate JWST's Flight Thermal Environment in Test?

- Use one of the largest thermal vacuum chambers in the world (NASA Johnson Space Center’s Chamber A)
 - Unfortunately, even this chamber is not large enough to fit all of JWST, so we need to test in separate system-level assemblies (OTIS being the major cryogenic test)

- Install a gaseous helium shroud to lower the payload temperatures to 20K, and an LN2 shroud to lower the overall environmental loads on the helium shroud/refrigerator [5]

- Install GSE to simulate heat from the flight spacecraft bus
OTIS CV Test Setup Inside Chamber A: Three Different System-Level Representations

Physical Hardware

CAD Model

Thermal Model

JSC Chamber A Wall
Liquid Nitrogen (LN2) Shroud
Helium Shroud

Image sources: NASA/JWST
JWST OTIS CV Test Setup: Payload Configuration

- **Primary Mirror Segment Assemblies (PMSAs)** (18 total)
- **Primary Mirror Backplane Support Structure (PMBSS)** = Backplane (BP) + Backplane Support Fixture (BSF)
- **Secondary Mirror Support Structure (SMSS)**
- **Deployable Tower Assembly (DTA)**
- **Aft Optics Subsystem (AOS):** Contains Tertiary Mirror (TM) and Fine Steering Mirror (FSM)
- **Integrated Science Instrument Module (ISIM), which contains the NIRSpec, NIRCam, FGS, and MIRI Instruments**
- **ISIM Electronics Compartment (IEC) (ROOM TEMPERATURE)**
- **Harness Radiator (HR)**
- **Thermal Management System (TMS)**
OTIS Thermal Control Hardware [6]

For payload: 836 flight sensors, 171 test sensors (many more test sensors for GSE)

Red: Heater Controlled
Blue: Helium Controlled

- FSM Baseplate Contamination Control Heater (flight)
- TM Sub-bench Warmup Heater (GSE)
- ISIM contains multiple instrument bench and trim heaters (flight): NIRSpec OA, NIRSpec FPA, NIRCam, FGS, MIRI
- ISIM Precool Strap zero-Q heaters for cryo-balance (GSE)
- ISIM DSERS (+V2, -V2, +V3, -V1, HR) in one Helium zone (GSE)
- BSF Hardpoint Strut zero-Q heaters control Payload/GSE interface (GSE)
- SMA Delta Frame warmup Heater (GSE)
- DTA Wagon Wheel Heaters maintain DTA base at 295K (GSE)
- SVTS Heater Plates control “Core” Environment (GSE)
- ISIM Precool Straps controllable through individual helium zone (GSE)
- IEC DSER controllable through individual helium zone (GSE)
- MIRI GSE Cryocooler to provide cold sink
- IEC contains suite of control heaters for the instrument electronics boxes (flight)

Source: NASA/JWST
GSE Considerations for the Cryogenic Test Environment [7]

- A robust thermal instrumentation plan was developed with multiple systems to rigorously interpret cryogenic test results
 - Calibrated diodes, precise data acquisition units for accuracy/resolution through range of test temperatures
 - Radiometers to measure localized heat sources
 - Calorimeters for understanding radiative boundaries and icing

- Thermal balance test required precise control of boundary heat leaks on the mW scale, and optical / instrument tests required management of stray light entering optical path
 - Stationary penetrations on Helium shroud closed out with single layer insulation (SLI) or multi-layer insulation (MLI)
 - Specialized systems of light-tight baffles, shell structures, and MLI used for shroud penetrations which moved due to cryo-shift (e.g. Down / Telescoping Rods) or mechanism operations (e.g. photogrammetry cameras)
 - Harnessing from external environment was anchored to increasingly colder thermal sinks to reduce stray light into chamber
How Did We Prepare for OTIS?

Major ISIM Element Thermal Vacuum/Thermal Balance Tests (SES Chamber, NASA GSFC)[8]

- Helium Shroud Acceptance Test
- Chamber Certification Test
- ISIM Structure Cryo-set Test
- ISIM Structure Cryoproof Test
- OSIM Cryo-Cal Test 1
- OSIM Cryo-Cal Test 2
- ISIM Element Cryo-Vacuum Tests (x3)

Major OTE Thermal Vacuum/Thermal Balance Tests (Chamber A, NASA JSC)[9-12]

- OTIS Analytical Models:
 - Contamination
 - Cryocooler
 - Mechanical / Dynamics
 - Optical / Stray Light
 - Spacecraft Sim / Software
 - Thermal
 - Thermal Distortion

- Chamber A Commissioning
- OGSE-1
- OGSE-2
- Thermal Pathfinder

Multi-year Development / Iterative Process

Jul-Oct 2017

Image Sources: NASA/JWST
What Are Our Requirements?

Constraints are put in place to avoid actions, conditions, or events, which if realized, will result in damage to flight hardware.

Limitations are put in place to avoid actions, conditions, or events, which have the potential for temporarily impacting performance or resulting in loss of test time.

- For the Thermal Subsystem, there were 84 constraints and 8 limitations out of more than 1,000 total for the OTIS test
 - Most thermal constraints and limitations were designed to avoid contamination, overstressing of structural elements and instruments. They defined absolute temperature limits, rates of change, gradients within structures, instruments, and temperature relationships between instruments, optics, thermal boundaries, usage of heaters

- The OTIS thermal team installed alarms to monitor and prevent any exceedances of L&Cs
 - Separate monitoring systems were used for flight and GSE sensors
 - FUSION, an in-house system developed at NASA GSFC, was employed to visualize both flight and GSE sensor data as it pertained to thermal-specific L&Cs
 - An alarm limit philosophy was developed to provide margin and time to respond on components which had L&Cs levied against them, but which did have sensors to directly measure their temperature against L&Cs
Full OTIS Predicted Profile

Source: NASA/JWST
Part I Summary

- In this lecture, we reviewed the mission of James Webb Space Telescope’s OTIS element and its thermal architecture
 - Science objectives for OTIS
 - Constituent components (flight and GSE)
 - Justification for and method of thermal vacuum testing
 - Thermal test objectives and requirements

- In the next lecture, we will focus on the development of the thermal test methodology via thermal analysis
 - Assembly of OTIS system-level model
 - Test profile generation via limit and constraint “feedback loop”
 - Accommodations for contamination and structural concerns
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOS</td>
<td>Aft Optical System</td>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>ACF</td>
<td>Auto-Collimating Flat</td>
<td>FGS</td>
<td>Fine Guidance Sensor</td>
</tr>
<tr>
<td>ADIR</td>
<td>Aft Deployable ISIM Radiator</td>
<td>FIR</td>
<td>Fixed ISIM Radiator</td>
</tr>
<tr>
<td>ASPA</td>
<td>Aft Optical System Source Plate Assembly</td>
<td>FPA</td>
<td>Focal Plane Arrays</td>
</tr>
<tr>
<td>BP</td>
<td>Back Plane</td>
<td>FSM</td>
<td>Fine Steering Mirror</td>
</tr>
<tr>
<td>BSF</td>
<td>Backplane Support Fixture</td>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>CoCOA</td>
<td>Center of Curvature Optical Assembly</td>
<td>GSFC</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>CPP</td>
<td>Cryo-Pumping Panels, cold panels between the Helium and LN2 shrouds at NASA JSC</td>
<td>H OSS</td>
<td>Hardpoint and Offload Support Structure</td>
</tr>
<tr>
<td>CSA</td>
<td>Canadian Space Agency</td>
<td>IEC</td>
<td>ISIM Electronics Compartment</td>
</tr>
<tr>
<td>CTE</td>
<td>Coefficient of thermal expansion</td>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>CV</td>
<td>Cryogenic Vacuum</td>
<td>ISIM</td>
<td>Integrated Science Instrument Module, which contains the Science Instruments (SIs)</td>
</tr>
<tr>
<td>ΔT, Δt</td>
<td>Change in temperature; change in time</td>
<td>JSC</td>
<td>NASA Johnson Space Center</td>
</tr>
<tr>
<td>DTA</td>
<td>Deployable Tower Assembly</td>
<td>JWST</td>
<td>James Webb Space Telescope</td>
</tr>
<tr>
<td>DSERS</td>
<td>Deep Space Environment Radiative Sink</td>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>EC</td>
<td>European Consortium</td>
<td>L&Cs</td>
<td>Limits and Constraints</td>
</tr>
</tbody>
</table>
Reference: Acronyms (Page 2)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5</td>
<td>Layer 5 Sunshield simulator</td>
<td>POM</td>
<td>Instrument Pick-Off Mirror</td>
</tr>
<tr>
<td>LN2, N2</td>
<td>Liquid Nitrogen; Gaseous Nitrogen</td>
<td>PM</td>
<td>Primary Mirror(s)</td>
</tr>
<tr>
<td>LRM</td>
<td>Launch Release Mechanism</td>
<td>PMSA</td>
<td>Primary Mirror Segment Assembly</td>
</tr>
<tr>
<td>MIRI</td>
<td>Mid-Infrared Instrument</td>
<td>PMBSS</td>
<td>Primary Mirror Backplane Support Structure</td>
</tr>
<tr>
<td>MLI</td>
<td>Multi-Layer Insulation</td>
<td>Q</td>
<td>Heat</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
<td>SI</td>
<td>Science Instrument</td>
</tr>
<tr>
<td>NGAS</td>
<td>Northrop Grumman Aerospace Systems</td>
<td>SINDA</td>
<td>Systems Improved Numerical Differential Analyzer modeling tool</td>
</tr>
<tr>
<td>NIRCam</td>
<td>Near-Infrared Camera Instrument</td>
<td>SM</td>
<td>Secondary Mirror</td>
</tr>
<tr>
<td>NIRSpec</td>
<td>Near-Infrared Spectrograph Instrument</td>
<td>SMA</td>
<td>Secondary Mirror Assembly</td>
</tr>
<tr>
<td>OA</td>
<td>Optical Assembly</td>
<td>SMSS</td>
<td>Secondary Mirror Support Structure</td>
</tr>
<tr>
<td>OGSE</td>
<td>Optical Ground Support Equipment, a series of pre-OTIS Optical pathfinder tests</td>
<td>SVTS</td>
<td>Space Vehicle thermal Simulator</td>
</tr>
<tr>
<td>OTE</td>
<td>Optical Telescope Element</td>
<td>TM</td>
<td>Tertiary Mirror</td>
</tr>
<tr>
<td>OTIS</td>
<td>Optical Telescope Element plus Integrated Science Instrument Module (OTE + ISIM)</td>
<td>TPF</td>
<td>Thermal Pathfinder test</td>
</tr>
<tr>
<td>PG</td>
<td>PhotoGrammetry cameras</td>
<td>W</td>
<td>Watt(s)</td>
</tr>
</tbody>
</table>

