2019 Scientific Ballooning Technologies Workshop

Telemetry Options for LDB Payloads

May 15, 2019

Chris Field
Principal Electrical Engineer
Current LOS Telemetry Options

• 1 MHz bandwidth digital transmitter
 – 330 Kbit bi-phase encoded data
 – ≈ 0.5 A @ 28V

• 3 MHz bandwidth digital transmitter
 – 1 Mbit bi-phase encoded data
 – ≈ 1.1 A @ 28V

• Analog video transmitter
 – NTSC
 – ≈ 2A @28V
Future LOS Telemetry Options

Ethernet Encoded Telemetry Transmitter

• Ethernet interface (UDP multicast packets)
 – Can handle multiple data sources with network switch

• Up to 8 Mbps with 10MHz bandwidth allocation

• Up to 12 Mbps with new 15.6MHz bandwidth allocation
 – Currently only in Continental USA

• Flown at 8 Mbps on 4 flights out of FTS FY18 campaign

• Testing at 12Mbps planned for FTS campaign

• CSBF is not currently logging this data, it will be the responsibility of the end user to log all data.

• Science availability possibly in 2020
Show video clip
https://youtu.be/XPFDj0PAZvU
Current TDRSS Telemetry Options

- Powered by CSBF

- Omni Antenna
 - 6-10 Kbps data
 - CSBF downlinks data in 2041 byte packets

- High Gain Antenna
 - 93 Kbps data
 - No packetizing

- Uplink commanding only available when requested by science
 - CSBF requests 24 hour notice for TDRS commanding requirements
Current Iridium Telemetry Options

• Iridium SBD
 – Email based
 – Always available
 – Uplink commands
 • Commands are checked 1/minute
 – Downlink 255 byte science packet
 • One packet every 1 to 15 minutes (selectable)

• Iridium Dialup
 – Usage must be requested
 – Uplink commands
 • Commands received “instantly”
 – Downlink 255 byte science packet
 – Downlink data through “high rate” port
 • The connection is only 2400 baud

• Iridium Pilot
 – IP based system
 – Up to 134 Kbps throughput
 – Typical throughput is ≈ 60 to 75Kbps (service is bursty)
 – Connect to system from anywhere in the world
 – Mission success cannot depend on Iridium Pilot link reliability
Future Telemetry Options

Low Cost TDRSS Transceiver (LCT2)

- Designed and built at WFF
- Variable output power (5-20W)
- Data rates up to 1 Mbps

- Test flights
 - 150kbps – FY15 Ft. Sumner (FLT 667NT)
 - 300kbps – FY18 FT. Sumner (FLT 689N)

- Test flight planned for FY19 Ft. Sumner at 1Mbps

- Science interface
 - 6 kbps – 75 kbps: SIP High Rate interface (RS232)
 - 100 kbps – 1 Mbps: Ethernet (UDP packets)

- Only one LCT2 can operate on one satellite at data rates above 150kbps

- Limited Science availability possibly in 2020
Lower Antenna Requirements

• LOS antenna hang below the gondola (minimum 1ft)

• Standard CSBF configuration
 – 2 - Receiver antennas
 • 1” wide X 27” long
 • Typically 24” separation
 – 2 - transmitter antennas
 • 5” diameter X 3” long
 • Typically 24” separation and away from receiver antennas

• Standard Science configuration
 – 1 – transmit antenna for Sci TM
 – 1 – transmit antenna for Sci Video

• FAA transponder antenna
 – 5” diameter X 3” long
 – NOT USED IN ANTARCTICA
Upper Antenna Requirements

• Upper antennas need an unobstructed view of the sky; they should be the highest objects on the gondola

• Standard LDB configuration
 – 3 GPS antennas
 • 4” diameter X 1” tall
 – 3 Iridium antennas
 • 3” diameter X 7” tall
 • 2 feet separation between radiating antennas
 – TDRSS Omni
 • 7” diameter X 12” tall (mid-latitude)
 • 7” diameter X 27” tall (Antarctic)
 • 2 feet separation between radiating antennas

• TDRSS HGA
 – 24” diameter X 16” tall
 – 25 lbs
 – Requires two additional GPS antennas with a minimum separation of 8’ (minimum 2 feet from any Iridium antenna)

• Iridium Pilot
 – 23” diameter X 8” tall
 – 28 lbs
 – 3 feet separation to any other antenna
Science to SIP interface

• Two Low Rate Science ports (one per SIP flight computer):
 – RS232: Baud Rate = 1200
 – Downlink telemetry 255 Byte packet, uplink commanding
 – Extended commanding available (up to 255 bytes per transmission)
 – Commanding through both SIP flight computers is required.
 – GPS position, time, and pressure altitude can be requested through this port.

• Two High Rate Science ports (one per SIP flight computer):
 – RS232: Baud Rate = up to 115,200 (configurable)
 – Must allow for different “effective” bit rates.
 – TDRSS – 6 kbps to 75 kbps (depending on link margin and antenna)
 – Iridium – up to 2 kbps max

• TDRSS Direct
 – RS232: Baud Rate = 115,200
 – Data Rate = 92 kbps

• IRIDIUM Pilot
 – Cat-5 Ethernet connected
 – port configurable

• Science Stack (control and TM) providing:
 – Analog and Digital input channels
 – Command outputs
 – Optically isolated and powered by Science
Science to CSBF ROCC/OCC Interface

• Two Science ports each to the LDB OCC and ROCC computers are required.
 – data port at 115,200 baud (configurable)
 – commanding port at 2400 baud

• Third port required for TDRSS HGA (TDRSS Direct Data – 93kbps) at OCC
THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN