"Digital Thread: Turbomachinery Design" Workshop

East Hartford, CT
August 20, 2018

Dr. Michael M. Rogers
Manager, Transformational Tools & Technologies (T³) Project
Transformative Aeronautics Concepts Program
NASA Aeronautics Research Mission Directorate
Outline

• NASA Motivation
• CFD Vision 2030 Study Summary
 – The Vision
 – Roadmap
 – Validation Experiments
 – CFD 2030 Activities Since Report Release
• \(T^3 \) Technical Challenges Supporting CFD Vision 2030
 – Revolutionary Computational Aerosciences (RCA)
 – Multidisciplinary Design, Analysis, and Optimization (MDAO)
 – Combustion Modeling
 – Innovative Measurements (Proposed)
• Implementation Plan, Going Forward
• Summary
NASA Aeronautics Strategic Implementation Plan (SIP)
A Living Document

Mega Drivers

Strategic R&D Thrusts

Community Vision

Community Outcomes

Research Themes

System-Level Metrics

Roadmaps

https://www.nasa.gov/aero/research/strategy
Key Trends (Not Exhaustive)

1. **Increasingly Urbanized World**
 - Rising Global Middle Class Driven by Asia-Pacific
 - Urban Transportation Increasingly Congested

2. **Continuing Pressure to Reduce Noise and Local Air Quality Impacts**
 - Aviation Industry Sets Challenging CO₂ Reduction Goals through Mid-Century

3. **Networked Com and Sensors, Embedded Artificial Intelligence, and Big Data Converging with Traditional Systems and Technologies**

4. **On-Demand Service Models Disrupting Traditional Industries**

Aviation Mega-Drivers

- **Global Mobility**: Industry / Gov’t Excs
- **Community Dialogue**: Industry / Gov’t SMEs
- **Analysis & Community Dialogue**: Systems Analysis

Community Vision

- **Safe, Efficient Growth in Global Operations**
- **Innovation in Commercial Supersonic Aircraft**
- **Ultra-Efficient Commercial Aircraft**
- **Transition to Alternative Propulsion and Energy**
- **In-Time System-Wide Safety Assurance**
- **Assured Autonomy for Aviation Transformation**

www.nasa.gov
NASA Mission Directorates

<table>
<thead>
<tr>
<th>Aeronautics Research (ARMD)</th>
<th>Human Exploration and Operations (HEOMD)</th>
<th>Science (SMD)</th>
<th>Space Technology (STMD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>Projects</td>
<td>Projects</td>
<td>Projects</td>
</tr>
<tr>
<td>Advanced Air Vehicles</td>
<td>Airspace Technology Operations and Safety</td>
<td>Integrated Aviation Systems</td>
<td>Transformative Aeronautics Concepts</td>
</tr>
<tr>
<td>• Advanced Air Transport Technology</td>
<td>• Airspace Technology Demonstrations</td>
<td>• Unmanned Aircraft Systems Integration in the National Airspace System</td>
<td>• Convergent Aeronautics Solutions</td>
</tr>
<tr>
<td>• Advanced Composites</td>
<td>• UAS Traffic Management</td>
<td>• Flight Demonstrations and Capabilities</td>
<td>• Transformational Tools and Technologies</td>
</tr>
<tr>
<td>• Revolutionary Vertical Lift Technology</td>
<td>• System-Wide Safety</td>
<td>• Low Boom Flight Demonstrator</td>
<td>• University Innovation</td>
</tr>
<tr>
<td>• Commercial Supersonic Technology</td>
<td>• ATM-X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Hypersonic Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARMD PROGRAMS

- **Jay Dryer: Director**
 - Advanced Air Vehicles
 - Projects:
 - Advanced Air Transport Technology
 - Advanced Composites
 - Revolutionary Vertical Lift Technology
 - Commercial Supersonic Technology
 - Hypersonic Technology

- **Akbar Sultan: Director**
 - Airspace Operations and Safety
 - Projects:
 - Airspace Technology Demonstrations
 - UAS Traffic Management
 - System-Wide Safety
 - ATM-X

- **Dr. Ed Waggoner: Director**
 - Integrated Aviation Systems
 - Projects:
 - Unmanned Aircraft Systems Integration in the National Airspace System
 - Flight Demonstrations and Capabilities
 - Low Boom Flight Demonstrator

- **Dr. John Cavolowsky: Director**
 - Transformative Aeronautics Concepts
 - Projects:
 - Convergent Aeronautics Solutions
 - Transformational Tools and Technologies
 - University Innovation

Aerosciences Evaluation & Test Capability Office

X-planes/test environment

Critical cross-cutting tool development

www.nasa.gov
Needed Prediction Capability for NASA Aeronautics
Ultra-Efficient Subsonic Transport (UEST) Concepts
Examples of Progress Through FY16

TTBW Aeroservoelastic • FY14
Langley Transonic Dynamics Tunnel

BWB/UHB Low Speed Operability • FY15
National Full-Scale Aerodynamic Complex at Ames

D8/BLI Integrated Benefit • FY13&14
Langley 14- By 22-Foot Subsonic Tunnel

TTBW Aerodynamic Integration • FY16
Ames 11-Foot Transonic Wind Tunnel

BWB Non-circular Fuselage • FY15
Langley Combined Loads Test System (COLTS)

HWB/OWN Performance • FY15
Langley National Transonic Facility
UEST X-Plane Concepts

Aurora
Double bubble/upper aft BLI

Boeing
Transonic Truss-Braced Wing

Boeing Blended Wing Body

Lockheed Martin
Hybrid Wing Body

Dzyne Blended Wing Body

Approved for Public Release
Flight Research and Demonstrations
recent and ongoing

X-56 Performance Adaptive Aeroelastic Wing

Adaptive Compliant Trailing Edge II

Landing Gear Noise Treatments

X-57 Maxwell

All Electric

High Lift System

Cruise System

www.nasa.gov
Conventional versus Revolutionary Vehicle Design

Conventional design of aircraft deliberately decoupled components to allow each to be considered independently

This simplifies the analysis, but limits the design choices

Integrated designs offer greater performance potential, but significantly increase complexity of the design process, requiring more capable analysis tools

Conventional “tube-and-wing” design

Boeing 747

Unconventional design

Blended Wing Body (BWB)
Emerging Urban Air Mobility (UAM) Market

- Key Applications
 - Highways in the sky → Personal travel/taxi service in and around cities to avoid congestion
 - Point-to-point air mobility without going through a hub
 - Cargo delivery services
 - Huge emerging market

- CFD Challenges:
 - Aeroacoustics – Community noise and its control, a huge issue
 - Unsteady Flow – Maneuvering vehicles will have unsteady flow separation and will benefit from flow control
 - Boundary Layer Transition – Smaller vehicles will have both laminar and turbulent flow
 - Flow/structure interaction

UAM companies have used NASA codes FUN3D and OVERFLOW for aerodynamic design

An artist’s concept of UAM

Cora, an electric air taxi designed by Kitty Hawk
Transformative Aeronautics Concepts Program

MISSION: Pursue rapid, proof-of-concept ideas in a high-risk and reward environment in order to inspire new solution paths, promote innovative design, and enable technology breakthroughs

GOAL:
- Cultivate concepts and technologies in all thrusts to enable aviation transformation

OBJECTIVES:
- **Support and challenge** strategic & tactical planning via early convergent innovation
- **Provide** transformative advancements across disciplines and advanced methods

APPROACH:
- Fostering innovative solutions
- Explore never-done-before tools
- Investing in advanced technologies
- Challenging internal and external communities
- Converging advancements in aeronautics and non-aeronautics sectors

Projects

Convergent Aeronautics Solutions (CAS) Project
Performs rapid feasibility assessments of early-stage aeronautics innovations that challenge existing technical approaches, create alternate paths to solutions, or enable new strategic outcomes.

Transformational Tools and Technologies (T³) Project
Performs deep-discipline research and development of first-of-a-kind capabilities to analyze, understand, predict, and measure performance of aviation systems; research and development of “tall-pole” technologies; all of which enables design of advanced aeronautics systems.

University Innovation (UI) Project
Addresses complex challenges in the strategic outcomes via independent, alternate path, multi-disciplinary University-led research projects; excites external community innovation to help fill-in the most difficult gaps via prizing.

T³ Sub-Projects

Revolutionary Tools and Methods
Development of revolutionary comprehensive physics-based aeronautics analysis and design capability. Philosophically based on Vision 2030 study recommendations

Critical Aeronautics Technologies
Development of critical aeronautics technologies that can enable revolutionary improvement in aircraft system design. Innovative ideas that may lead to patentable results.

Autonomous Systems
Foundational research to enable increased autonomy in aviation. Currently being planned.
CFD Vision 2030 Study Summary
The study was conducted:

- “…to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations…”

- “…and to lay the foundation for the development of a future framework/environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-disciplinary analysis and design.”

An industry-universities team led this study with CFD community input

NRA awarded: 9/30/2012
Report published: 3/19/2014
CFD Vision 2030 Study

- **Elements of the study effort:**
 - Define and develop **CFD requirements**
 - Identify the most critical **gaps/impediments**
 - Create the **vision**
 - Develop a long-term, actionable **research plan** and detailed **technology development roadmap**

- **Wide community support for the research roadmap,** as evidenced by articles in **Aerospace America,** **Aviation Week & Space Technology,** **The Connector,** **Science Daily,** as well as speaking invitations from **DoE** and **Pointwise.**

- **Report recommendations inform \(T^3 \) project planning**

Report available at:
https://www.nasa.gov/aeroresearch/programs/tacp/qtt/cfd-vision-2030-study
Vision of CFD in 2030

- **Emphasis on physics-based, predictive modeling**
 Transition, turbulence, separation, unsteady/time accurate, chemically-reacting flows, radiation, heat transfer, acoustics and constitutive models, among others.

- **Management of errors and uncertainties**
 Quantification of errors and uncertainties arising from physical models (epistemic), mesh and discretization, and natural variability (aleatory) and their effect on important engineering quantities of interest.

- **A much higher degree of automation in all steps of the analysis process**
 Geometry creation, meshing, large databases of simulation results, extraction and understanding of the vast amounts of information generated with minimal user intervention.

- **Ability to effectively utilize massively parallel HPC architectures that will be available in the 2030 time frame**
 Multiple memory hierarchies, latencies, bandwidths, programming paradigms and runtime environments, etc.

- **Flexible use of HPC systems**
 Capacity- and capability-computing tasks in both industrial and research environments.

- **Seamless integration with multidisciplinary analyses**
 High fidelity CFD tools, interfaces, coupling approaches, etc.

Physics-based tools required for timely analysis/design of novel configurations.
Technology Development Roadmap

HPC
- CFD on Massively Parallel Systems
 - PETASCALE: Demonstrate implementation of CFD algorithms for extreme parallelism in NASA CFD codes (e.g., FUN3D)
- CFD on Revolutionary Systems (Quantum, Bio, etc.)
 - EXASCALE: Demonstrate efficient scaled CFD simulation capability on an exascale system

Physical Modeling
- RANS
- Hybrid RANS/LES: Integrated transition prediction
- LES: Chemical kinetics calculation speedup
- Combustion: Improved RST models in CFD codes
- Convergence/Robustness: Automated robust solvers
- Uncertainty Quantification (UQ): Reliable error estimates in CFD codes

Algorithms
- Characterization of UQ in aerospace
- Reliability of CFD models for flow separation
- Grid convergence for a complete configuration
- Production scalable entropy-stable solvers

Geometry and Grid Generation
- Fixed Grid: Production AMR in CFD codes
- Adaptive Grid: Simplified data representation

Knowledge Extraction
- Visualization: On-demand analysis/visualization of a 10B point unsteady CFD simulation

MDAO
- Define standard for coupling to other disciplines
- Incorporation of UQ for MDAO
- MDAO simulation of an entire aircraft (e.g., aero-acoustics)
- UQ-Enabled MDAO
CFD Vision 2030 Study Findings

- The **accuracy of CFD** in the aerospace design process is severely limited by the **inability to reliably predict turbulent flows** with significant regions of **separation**
- **HPC hardware** is progressing rapidly and technologies that will prevail are difficult to predict
- **Revolutionary algorithmic improvements** will be required to enable future advances in simulation capability
- **Mesh generation and adaptivity** continue to be **significant bottlenecks** in the CFD workflow, and very little government investment has been targeted in these areas
- Managing the **vast amounts of data** generated by current and future large-scale simulations will continue to be problematic and will become increasingly complex due to changing HPC hardware
- **Technology advances** are required to enable increasingly **multidisciplinary simulations**, for both **analysis and design optimization purposes**
1. NASA should develop, fund and sustain a base research and technology (R/T) development program for simulation-based analysis and design technologies.

2. NASA should develop and maintain an integrated simulation and software development infrastructure to enable rapid CFD technology maturation.

3. HPC systems should be made available and utilized for large-scale CFD development and testing.

4. NASA should lead efforts to develop and execute integrated experimental testing and computational validation campaigns.

5. NASA should develop, foster, and leverage improved collaborations with key research partners and industrial stakeholders across disciplines within the broader scientific and engineering communities.

6. NASA should attract world-class engineers and scientists.
T³ CFD Validation Experiments

- **Juncture Flow Experiment**
 - Prediction of trailing edge corner separation a challenge
 - Risk reduction experiments used for final design
 - First 14x22 FT entry in November 2017

- **Turbulent Heat Flux (THX) Experiment**
 - Need experimental data for CFD of turbulent heat transfer

- **Shock Wave/Boundary Layer Interaction**
 - Mach 2.5 Axisymmetric SBLI (attached and separated)
 - Mean and turbulent stress data

- **“2D” Separation**
 - NRA to Notre Dame (Flint and Corke)
 - Data for attached and separated (incipient, small, large) flow

- **2D Compressible Mixing Layer**
 - NRA to U-Illinois (Dutton and Elliott)
 - Full documentation of BC and mean/turbulence data

A CFD Validation Experiment should include the measurement of all information, including boundary conditions, geometry information, and quantification of experimental uncertainties, necessary for a thorough and unambiguous comparison to CFD predictions.
NASA Juncture Flow Experiment

- Geometric junctures (corners) are common on aircraft
 - CFD predictive capability is currently uncertain
 - For example, in Drag Prediction Workshops (DPW), participants predicted a wide range of wing-body corner separation bubble sizes (none to very large)
- Because of the high degree of uncertainty in the CFD predictions, relevant separated corner flow experiments focused specifically on obtaining high-quality data for CFD validation are needed

Example juncture flow computations using 3 different turbulence models

SA SA-RC-QCR RSM
NASA Juncture Flow Experiment

FY15 and FY16 Risk Reduction Experiments

3% Semi-span Juncture Flow Model in the ARC Fluid Mechanics Lab Jun 2015
Model loaned to Caltech for Boeing/Caltech test

2.5% Juncture Flow Model in the VA Tech 6-foot Stability Wind Tunnel Aug 2015
Model loaned to VA Tech for further testing and educational use

6% Juncture Flow Model in the LaRC 14’X22’ Wind Tunnel Nov/Dec 2015
F6 Wing without Horn (Port Side): $\text{Re}_c = 2.4$ million

$\alpha = -10^\circ$

$\alpha = -7.5^\circ$

$\alpha = -5^\circ$

$\alpha = -2.5^\circ$

$\alpha = 0^\circ$

$\alpha = 2.5^\circ$

$\alpha = 5^\circ$

$\alpha = 7.5^\circ$

$\alpha = 10^\circ$
POC: Chris Rumsey (NASA LaRC)
Turbulent Heat Flux (THX) Experiments

Data for improving models for turbulent heat flux and cooling hole boundary conditions. High-quality flow field data includes: Mean velocities and temperatures, turbulent statistics – using PIV and Raman; surface temperatures using TCs and IR imagery. Well documented inflow conditions for CFD modeling. Experimentalists and CFD modelers involved in all aspects of experiments from test planning through experimentation.

TESTING
- Phase 1 experiments: low speed/temperature cooling flow
- Phase 2 round jet experiments: Maximum $T_t=1000$ K and jet Mach $=0.9$ - NASA GRC Acoustic reference nozzle (ARN)
- Phase 3 square nozzle with plate having single cooling injector (similar flow conditions as step 2, multiple blowing ratios)
- Phase 4 same nozzle as Phase 3, 3 arrays of 45 cooling holes - hardware fabrication completed; tests scheduled in AAPL May-June 2018.

Mainstream flow (30 ft/sec, room temp)
- Hot-wire (T')
- PIV (u', v', w')
- Thermocouples
- Pitot probes

Flat plate
- Heated film injection
- Thru single hole and three holes
- ($\Delta T=75$ deg F)

THX Phase 3 nozzle and plate (single injector hole) installed in NASA GRC AAPL facility.

PIV measurements of mean velocity.

Raman measurements of mean temperature.

THX Phase 4 plate concept (3 arrays of cooling holes).

POC: Nick Georgiadis (GRC), Mark Wernet (GRC), and Randy Locke (GRC/VPL).
CFD 2030 Activities Since Report Release

<table>
<thead>
<tr>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIAA Aviation Atlanta</td>
<td>Aerospace America</td>
<td>Pointwise User Group Meeting (Geometry/Grid)</td>
<td>DoE Turbulence Simulation Workshop</td>
</tr>
<tr>
<td>Salishan HPC Conference</td>
<td>Royal Aeronautical Society Technical Paper</td>
<td>DoD USAF HPC User Forum</td>
<td></td>
</tr>
</tbody>
</table>

NASA Activities
- Briefing to HQ
- HPC User Forum
- NRAs
- Implementation Pre-Workshop
- Trends in simulation-based engineering
- Implementation Discussion Group
- AIAA CFD 2030 IC

DoE Activities
- Interactions with HPC community
- AFRL FUN3D Collaboration

DoD Activities
- AFRL FUN3D Collaboration

- Steady, significant progress in socializing CFD Vision 2030 message to aerospace and science communities
- AIAA CFD 2030 Integration Committee is intended to engage both traditional and non-traditional (e.g., applied math, computer scientists) stakeholders in aerospace
CFD 2030 Activities Since Report Release

<table>
<thead>
<tr>
<th>2014</th>
<th>2016</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invited sessions AIAA Aviation June 2016, 2017, 2018</td>
<td>Transition Prediction Workshop September 2017</td>
<td>AIAA CQbA Community of Interest meeting January 2018</td>
</tr>
<tr>
<td>AIAA CQbA Community of Interest kickoff June 2018</td>
<td>NASA/Boeing CbA Workshop April 2018</td>
<td>NASA/PW/UTRC virtual meeting May 2018</td>
</tr>
</tbody>
</table>

- **Technology areas requiring research and development:**
 - Accurate prediction of $C_{L_{\text{max}}}$, buffet and flutter
 - Accurate prediction of complex flows:
 - Thermal shear layers
 - Corner flows
 - Inlet distortion/BLI
 - Turbomachinery
 - Reduce start to finish analysis time/increase HPC efficiency
 - Uncertainty quantification/data fusion/ROM
 - Aeroelastic/aeroacoustics predictions

Use of CFD at corners of the flight envelope will require more use of unsteady analysis and improved physical models.
T³ Technical Challenges (TCs)
Supporting CFD Vision 2030
Revolutionary Tools & Methods TCs

Development of revolutionary comprehensive physics-based aeronautics analysis and design capability, based on Vision 2030 study recommendations.

<table>
<thead>
<tr>
<th>Technical Challenges (TCs)</th>
<th>Roadmap Swim Lanes Supported</th>
</tr>
</thead>
</table>
| **Physics-Based Turbulence Models & Simulations (2018):**
Identify and downselect critical turbulence, transition, and numerical method technologies for 40% reduction in predictive error against standard test cases for turbulent separated flows, evolution of free shear flows, and shock-boundary layer interactions on state-of-the-art high performance computing hardware. | **Physical Modeling:**
1. Advanced RANS
2. Large eddy simulation (LES)
3. Hybrid RANS/LES approaches
4. Validation experiments for turbulence and transition

Complete: 5/31/2018

Algorithms:
1. High-order entropy stable numerical schemes
2. Uncertainty quantification
3. Adjoint-based methods for sensitivity analysis |
| **MDAO (2022):**
Develop advanced design and optimization tools for coupled multidisciplinary analysis with a range of fidelities to shorten the design cycle of revolutionary new vehicles. Use X-Plane ground and flight test data to validate the implementation of critical physics required to model new concept aircraft. | **MDAO:**
1. Aero-structural, propulsion-airframe integration
2. Perception-influenced acoustic design
3. Reduced order models development
4. Mixed fidelity optimization
5. High-fidelity MDAO
6. OpenMDAO framework development |
| **Combustion Modeling (2022):**
Predict the sensitivity of lean blowout and soot emissions to changes in fuel composition occurring with the use of alternative fuels (or blends) where the relative difference in fuel sensitivity between simulations and experiments is less than 20%. | **Physical Modeling:**
1. Develop turbulent combustion models, including chemistry, spray, soot
2. Large eddy simulation methods for combustion
3. Validation experiments, with multiple fuels |
Was the 40% challenge successful?
“The metric was quantitatively specific, making the challenge quite ambitious. Our assessment of whether the goal was achieved is a qualified yes: the results have identified a clear need to further refine and pursue these goals.

i) RANS models have shown the potential to be more accurate when suitably tailored, but most of the improvements remain problem-specific,

ii) The potential of intermediate level fidelity (WMLES and HRLES) was demonstrated, but model sensitivity needs extensive further assessment,

iii) High-fidelity methods (WRLES) of impressive size were shown to be clearly capable, but grid convergence and expense considerations require more work even for moderate Reynolds numbers.”
Proposed Future Technical Challenge (FY19-FY25)
Enhanced CFD capability to enable Certification by Analysis

Proposed Technical Challenge: Develop, implement, and validate computationally efficient physics-based methods and tools that reduce error in predicting aerodynamic stall, buffet, flutter and propulsion system performance, to enable novel efficient aircraft designs and aircraft certification by analysis.

- Directly supports new Design and Development Methods Critical Commitment
- Expands capability of CFD to predict unsteady phenomena such as stall, buffet, and flutter
- Includes focus on low-speed, high-lift flight, a multidisciplinary challenge that accounts for up to two-thirds of flight certification test points

Technical Areas and Approaches
- LES and RANS/LES hybrid approaches for unsteady flows
- Data-driven turbulence modeling, using machine learning tools
- Accurate, efficient, and robust higher-order computational methods
- Effective utilization of emerging HPC hardware
- Reliable and effective grid generation and adaptation
- Reliable uncertainty quantification and error estimation
- Laminar-turbulent transition modeling
- CFD Validation Experiments
- Demonstration of new computational methods for CLmax, buffet, flutter and aeropropulsion predictions

Benefit/Pay-off
- Enables improved and accelerated multidisciplinary designs, reduced certification flight test, and substantial cost savings.
• Issues that prevent larger scale use of computational simulation data for certification include:

 – Numerical simulation, especially CFD, still has accuracy limitations, particularly near the edges and off-nominal areas of the flight envelope. Limited validation of current-generation tools has been performed away from nominal flight conditions.

 – There is a general lack of robustness and consistency of the computational analysis process. Numerical accuracy, especially in the application of CFD, is often dependent on the expertise of the specific user and method or process being utilized.

 – Varying levels of geometric simplification often result in the potential loss of modeling fidelity required to capture the essential physics in CFD simulations of real aircraft and/or engine configurations. Accurate modeling of all relevant geometric features is critical in using numerical simulation to correctly predict flight characteristics.

 – There is a general lack of trust and understanding of the use of analysis tools specifically for regulatory certification and compliance.

RCA's Technical Challenge is designed to overcome these issues, enabling computational simulations to provide data for Certification by Analysis rather than by flight testing.
Technical Challenge:
Develop advanced design and optimization tools for coupled multidisciplinary analysis with a range of fidelities to shorten the design cycle of revolutionary new vehicles. Use X-Plane ground and flight test data to validate the implementation of critical physics required to model new concept aircraft.

Technical Areas and Approaches:
- Focus on Propulsion-Airframe Integration, Aero-Structural Integration, and Perception-Influenced Acoustic Design.
- Develop lower-order models to better represent higher-order effects to enable timely solution for rapid conceptual design.
- Enable mixed fidelity optimization to tailor solution for user needs and resources.
- Enable high-fidelity multidisciplinary analysis and optimization with adjoints (solved as a coupled system in a single optimization cycle).

Benefit/Pay-off:
- Supports advanced vehicle configurations, which require coupled models.
- Better multidisciplinary designs support Thrusts 2, 3, and 4 goals.
- Reduced design cycle time with efficient model evolution.
Progress Indicator Chart: Multi-disciplinary Design, Analysis, and Optimization (MDAO)

| Targeted Disciplines for Coupled Analysis/Optimization for N+3 Vehicles |
|-----------------------------|-----------------|----------------|----------------|----------------|---------------|----------------|
| Mission/Trajectory | Mass Properties | Aero | Propulsion | Structures | Elasticity | Acoustics | Thermal |
| 40% | 70% | 30% | 20% | 10% | | | |
| Mission/Trajectory | Mass Properties | 50% | 20% | 20% | 10% | | |
| Mass Properties | 30% | 30% | 30% | | 10% | 10% | 20% |
| Aero | 30% | 30% | 10% | 20% | 10% | 10% | 20% |
| Propulsion | 20% | 10% | | | | | |
| Structures | 30% | | | | | | |
| Elasticity | | | | | | | |
| Acoustics | | | | | | | |
| Thermal | | | | | | | |

- High-order tools N+3 capability added
- Low-order tools N+3 capability added

<table>
<thead>
<tr>
<th>Progress Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Early design/formulation</td>
</tr>
<tr>
<td>20% Mature design/formulation</td>
</tr>
<tr>
<td>30% Stand-alone/unit testing</td>
</tr>
<tr>
<td>40% Early toolset integration</td>
</tr>
<tr>
<td>50% Mid toolset integration</td>
</tr>
<tr>
<td>60% Mature toolset integration</td>
</tr>
<tr>
<td>70% Early verification testing</td>
</tr>
<tr>
<td>80% Mature verification testing</td>
</tr>
<tr>
<td>90% Early validation testing</td>
</tr>
<tr>
<td>100% Completed validation testing</td>
</tr>
</tbody>
</table>

BLI optimization with trajectory constraints

MDAO tools with range of fidelities for revolutionary new vehicles

Low-order tools N+3 capability added

- Validated low-order tools against ground/flight data
- Concept-level FEA capability
- Adjoint-based propeller design
- LEAPS for advanced aircraft
- Design opt under uncertainty method demo
- LEAPS for conventional aircraft
- Multi-source geom def’n and auto-meshing
- ODM optimization with 5 coupled disciplines
- BLI optimization

Notional Cumulative Progress

- FY17
- FY18
- FY19
- FY20
- FY21
- FY22

Progress Criteria

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Integration</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>Early design/formulation</td>
<td>Mature design/formulation</td>
<td>Stand-alone/unit testing</td>
</tr>
<tr>
<td>40%</td>
<td>50%</td>
<td>60%</td>
</tr>
<tr>
<td>Early toolset integration</td>
<td>Mid toolset integration</td>
<td>Mature toolset integration</td>
</tr>
<tr>
<td>70%</td>
<td>80%</td>
<td>90%</td>
</tr>
<tr>
<td>Early verification testing</td>
<td>Mature verification testing</td>
<td>Early validation testing</td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed validation testing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
T³ Combustion Modeling

Technical Challenge TACP04:
Predict the sensitivity of lean blowout and soot emissions to changes in fuel composition occurring with use of alternative fuels (or blends) where relative difference in fuel sensitivity between CFD and experiments is less than 20%.

Technical Areas and Approaches:
• Develop chemistry, spray, soot, turbulent combustion models
• Advance Large Eddy Simulation methods for combustion
• Leverage fuels and test data from National Jet Fuels Combustion Program (NJFCP) and AFRL experiments
• Conduct experiments (GRC, NRAs, and NJFCP partners) with multiple fuels (or surrogates) to provide validation data
• Develop combustor-turbine LES capability addressing compact engine core challenges for high OPR or hybrid-electric

Benefit/Pay-off:
• Streamline ASTM fuel certification process (NJFCP)
• Accelerate use of alternative fuels and increased blend ratios of alternative fuels with conventional Jet-A (ARMD Thrust 4)
• Tools to optimize combustor to fuels (or fuels to combustor)
• Advances in chemistry, spray, and turbulent combustion models expected to improve NOx emission prediction capabilities (ARMD Thrust 2 and 3)
Combustion Modeling – Highlights

TC: Predict the sensitivity of lean blowout (LBO) and soot emissions to changes in fuel composition occurring with use of alternative fuels (or blends) where relative difference in fuel sensitivity between CFD and experiments is less than 20%

• Chemistry Modeling: Validated that Hybrid Chemistry approach can predict fuel sensitivity of fuel pyrolysis and ignition delay time. HyChem models created for conventional and alternative fuels were reduced to 26 – 31 species, and transferred to GRC and NRA CFD teams for LBO simulations.

• Soot Modeling: Completed experiments quantifying impact of light and heavy end of Jet-A distillation species on soot production and demonstrating need for multi-component spray evaporation models to accurate soot nucleation predictions.

• CFD Modeling: Achieved coordination of four teams (GRC, Stanford, GTech, UTRC) to use same grid, boundary conditions and spray injection for simulating LBO experiments in NJFCP referee rig for Jet-A and two alternative fuels. Provides consistent basis to evaluate impact of chemistry and turbulent-chemistry modeling on LBO predictions. Simulations are underway.

• Spray Modeling: Validated key components of LES spray atomization sub-grid turbulence modeling and dense spray region of atomization process.
Technical Challenge: Develop new and improved non-intrusive measurement technologies to support and validate flowfield and structural measurements of velocity, temperature, density, pressure, and deflection. Demonstrate new or fivefold improvement in existing techniques in terms of accuracy, precision, efficiency, bandwidth, spatial resolution, or temporal resolution over the current state-of-the-art supporting planned ARMD unsteady flowfield validation experiments.

Technology Demonstrations / Advancements:

Supporting N+3 Vehicles

- **2022**
 - NLF HWB (NTF*, 11x9)
 - AFC High-Lift Test (14x22)
 - Aeroelastic (TDT)

Measurement Objectives Met

- **2019**
 - IR Thermography
 - PSP/TSP
 - PIV
 - IR Thermography
 - PSP/TSP

- **2020**
 - BOS
 - Rayleigh*
 - PIV
 - IR Thermography
 - Photogrammetry*

- **2021**
 - BOS
 - PIV
 - IR Thermography
 - PSP/TSP
 - PSP/TSP

- **2022**
 - BOS
 - PIV
 - IR Thermography
 - PSP/TSP
 - PSP/TSP

- **2023**
 - Tomographic Density Field
 - Hi Speed Flow Field Pressure Map
 - Hi Speed/Large FOV Velocimetry
 - High Speed Transition Detection
 - Full Surface Deformation
 - PSP in Heavy Gas & Unsteady Flow

* New Technology or Research Capability not currently in Discipline or Facility
Implementation Plan, Going Forward

• Review/update CFD Vision 2030 roadmap every 5 years
 – Current T³ priorities encapsulated in the 4 Technical Challenges
 – Review progress and adjust research portfolio periodically to maximize impact on CFD Vision 2030 objectives

• Explore collaborative opportunities with OGAs more aggressively
 – Order of magnitude more DOD and DOE investment in HPC

• Leverage CFD community activities through AIAA
 – Focused workshops, special sessions, Integration Committees, Communities of Interest

• Seek opportunities to interact with international experts
 – European institutions leading in certain areas

• Awarding additional NRA awards in CFD Vision 2030 areas

• Reevaluate use of Collaborative Centers of Excellence when additional funds are available
 – First Priorities: (1) Geometry and Grid Generation, (2) HPC and Knowledge Extraction
Summary

- Working towards Certification by Analysis, to significantly reduce flight testing
 - Accurate prediction of smooth body flow separation, CL_{max}, buffet, and aeropropulsion performance
 - Orders of magnitude speed up, with algorithms and hardware
 - Needed for eddy resolving simulations, aero database generation, high-fidelity MDAO, and uncertainty quantification
- New, high-quality CFD validation data is critical for development of physics-based prediction tools
 - NASA generated data will be shared with CFD community at large
 - Encourage others to conduct CFD validation experiments
- For more information:
 - https://www.nasa.gov/aeroresearch/programs/tacp/qtt
 - michael.m.rogers@nasa.gov

Development of Computational Tools will Enable Aircraft Certification by Analysis and Design of New Aerospace Configurations
Juncture Flow Experiment - 2

- Unique on-board Laser-Doppler Velocimetry (LDV) system specifically designed for measuring the near-wall juncture region flow field through windows
- Consistent CFD and wind tunnel experiment
- Data
 - Off-body velocities and moments (LDV and some PIV)
 - Model surface pressures, unsteady surface pressures and surface shear stress measurements
- Boundary conditions
 - Over the body: measurements at front window
 - Test section wall pressures/wall rakes
 - Infrared thermography for transition detection/trip effectiveness
 - Tunnel inflow (measured with Boeing’s QWSS in separate tests)
- Geometry
 - Laser scans of tunnel walls, model, and mast/sting/cabling details
 - Photogrammetry to document wing deflections
- Documentation
 - Special session at AIAA SciTech 2019
Other RCA Research

- **Turbulence Modeling and Simulations**
 - Modified k-kL model(s) for wall-bounded and free shear flows
 - Lattice-Boltzmann method for unsteady flow simulation
 - Several hybrid RANS/LES approaches (e.g., PANS)
 - Turbulent hot jets

- **Numerical Methods**
 - Stabilized finite-elements (SUPG)
 - Hyperbolic Navier-Stokes (HNS)
 - Space-time flux reconstruction
 - HANIM for convergence acceleration
 - Uncertainty quantification

- **Transition Prediction and Modeling**
 - LASTRAC: Langley Stability and Transition Analysis Code
 - Analysis and control of hypersonic boundary layer transition
 - Supersonic transition experiments with effect of roughness
 - Crossflow transition experiments to study the effect of steps
AIAA CFD Vision 2030 Integration Committee

Goal: Create a community of practice to advance CFD Vision 2030

Approach
Establish a CFD Vision 2030 Integration Committee (CFD2030 IC) to advocate for, inspire, and enable community activities recommended by the CFD Vision 2030 Study for revolutionary advances in the state-of-the-art of computational technologies needed for the analysis, design, certification, and qualification of future aerospace systems.

Proposed Charter Statement
The CFD Vision 2030 Integration Committee (CFD2030 IC) will establish and promote a community of practice engaged in developing methods, models, physical experiments, software, and hardware for revolutionary advances in computational simulation technologies for analysis, design, certification, and qualification of aerospace systems. The CFD2030 IC serves as the focal point for activities to achieve the 2030 Vision by leveraging and integrating enabling technologies such as high performance computing, physical modeling, numerical methods, geometry/grids, validation quality experiments, and multidisciplinary analysis and optimization, with quantified uncertainty. The CFD2030 IC will communicate with technical committees to assure that the AIAA membership engages with their peers and external non-AIAA constituencies in shaping the future of the simulation-based engineering.
MDAO – FY17 Highlights

Acoustics:
• Prediction of Distributed Electric Propulsion (DEP) propeller noise characteristics in software; Wind tunnel test in LSAWT completed for validation data. Work in progress now for multi-prop and prop-wing configurations.
• Integration of human annoyance metrics in coupled ANOPP2-NAF framework.

High-Order-Capable, Multi-fidelity MDAO Tools
• OpenMDAO modeling capability enhancements -- Coupling of key disciplines (Aero-Propulsion, Trajectory-Propulsion, Trajectory-Aero-Thermal, Structural-Thermal) accomplished for high-order-capable MDAO tools targeting eventual coupling of 5 disciplines for conceptual design and optimization.
• Multi-functional structure modeling -- Initial integration of topology optimization methods into OpenMDAO completed to enable generation of multi-functional structures (load-bearing and heat dissipating) lightweight structures.

Low-Order Conceptual Design MDAO Tools
• LEAPS Next Generation Aircraft Systems Analysis Software – First results generated using new low-order weight prediction methodology in LEAPS architecture. OpenVSP framework integration architecture design completed and tested in stand-alone environment.
• Distributed Propulsion Design Tool -- Developed a rapid aerodynamic analysis of distributed propulsion interaction with lifting surfaces suitable for parametric analysis capable of modeling arbitrary installation locations of propulsors with respect to the lifting surfaces.
Nurturing and Growing CFD Vision 2030: Activities in FY 2017

- **Implementation Discussion Meetings (AIAA SciTech 2017; AIAA Aviation 2017)**
 - Group recommended formation of AIAA CFD 2030 Integration Committee (CFD2030 IC)
 - Draws members from government, industry, and academia
 - Engages 10 AIAA Technical Committees
 - Proposal submitted to AIAA for approval

- **AIAA Aviation 2017 Special Session** “Capabilities and Challenges in CFD, Academia, Government, and Industry Perspective”
 - 200+ standing room only during presentation on “CFD Vision 2030 and its Implementation”

- **CFD Validation Experiments**
 - Juncture Flow, THX, SWBLI, NRA: separation, compressible free shear layer

- **Computational Aerosciences Framework**
 - Define interfaces for common functionality (Study recommendation #2)
 - Independently developed simulation technologies can be deployed by adhering to defined interfaces → Boeing plans to integrate BCFD into the framework
Nurturing and Growing CFD Vision 2030: Activities in FY 2017 (continued)

- **Transition Prediction Workshop, September 13-14, 2017**
 - Integrated transition prediction capability recommended by the study
 - Over 90 participants from government, industry, academia and international organizations (DLR, ONERA, JAXA)

- **University of Michigan/NASA Symposium on “Advances in Turbulence Modeling”**
 - About 90 attendees from government, industry, and academia, representing modelers, CFD developers/users, and experimentalists
 - Discussed state of the art and the way forward

- **2017 AFOSR High Speed Aerodynamics Portfolio/ONR Hypersonic Portfolio Review**
 - Participated for awareness and leveraging common portfolio

- **Northrop-Grumman Corporation (NGC) Visit**
 - Technical interchange and explored ideas for collaboration
 - Planned collaborative activities in adjoint-based shape optimization

- **Visit by JAXA for Collaborative Activities under CFD Vision 2030**
 - Interested in juncture flow experiment and transition modeling
RTM NASA Research Announcements (NRAs)

NASA Research Announcements (NRAs) provide a mechanism to collaborate with academia and industry, a recommendation of the CFD Vision 2030 Study (20 New NRAs awarded FY15 & FY16, a significant investment)

<table>
<thead>
<tr>
<th>NRAs Awarded</th>
<th>Roadmap Swim Lanes Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Turbulence Modeling/Simulation NRAs: (1) Stanford, (2) UT-Austin, (3) U. Colorado, (4) Notre Dame, (5) U. Illinois-UC</td>
<td>Physical Modeling, including Validation Experiments</td>
</tr>
<tr>
<td>2 Numerical Methods NRAs: (1) MIT, (2) U. Wyoming</td>
<td>Algorithms</td>
</tr>
<tr>
<td>2 Grid Generation NRAs: (1) ODU, (2) Syracuse U.</td>
<td>Geometry and Grid Generation</td>
</tr>
<tr>
<td>5 MDAO NRAs: (1) MIT, (2) Georgia Tech, (3) Georgia Tech, (4) U. Alabama, (5) UC-Berkeley</td>
<td>MDAO</td>
</tr>
</tbody>
</table>

Figure 7: NASA Common Research Model (CRM): visualization of the Voronoi mesh elements (12 million CVs) for the wing-body-nacelle-pylon configuration (4 degree angle of attack with the wind-tunnel measured static aero-elastic deformation). (left) mesh elements near a cross-sectional plane located near the center of the wing-body junction. (right) zoomed-in view of the left panel.

Figure 8: NASA Common Research Model (CRM): total lift (left) and drag (right) coefficients versus angle of attack for the wing-body-nacelle-pylon configuration. Blue solid lines, measurements from the Ames 11-ft wind tunnel; red dashed lines, measurements from the Langley National Transonic Facility; black square symbols, predictions from WMLES at AoA = 4° (free-air simulation with static aeroelastic deflections, 12M CVs, dynamic Smagorinsky SGS model, 1st-cell equilibrium wall model, legacy CharLES code run with a Voronoi grid). Wall correction has been made to the experimental data, but they differ little from the raw data.
Vision 2040 for Integrated, Multiscale Materials and Structures Modeling/Simulation NRA

2040 Vision State
A cyber-physical-social ecosystem that impacts the supply chain to accelerate model-based concurrent design, development, and deployment of materials and systems throughout the product lifecycle for affordable, producible aerospace applications

Key Element Domains

1. Models and Methodologies
2. Multiscale Measurement & Characterization Tools and Methods
3. Optimization & Optimization Methodologies
4. Decision Making and UQ
5. Verification & Validation
6. Data, Informatics, & Visualization
7. Workflows & Collaboration Frameworks
8. Education & Training
9. Computational Infrastructure

Needed to overcome various gaps and challenges to achieve the fully integrated 2040 Vision end state

Report available at: https://ntrs.nasa.gov/

Phase II
Phase I
Vision 2040 for Integrated, Multiscale Materials and Structures Modeling/Simulation NRA

NRA Phase 2 Awarded Sept 2016 – Completion Jan 2018

OBJECTIVE:
Seeking community input to develop a knowledge-based forecast of the future:
- Computationally assisted design and certification environment
- **Integrated, multiscale materials and structures modeling**
- Applicable to advanced materials (functional, metallic, ceramic, and polymer matrix composites)
- With a focus on emerging aeronautical vehicle applications
- Achievable by 2040.

APPROACH:

- Identify core discipline areas, technology gaps, and recommend actions to enable multiscale coupled material and system design and analysis
- Study engages the entire “supply chain” and considers the need for acceptance by regulatory bodies.

FY 17 NRA PHASE II TASK PROGRESS:

- Established 9 Expert Panels to finalize gaps/actions and obtain consensus
- Held 3 Workshops to gain community consensus on 2040 Vision:
 - AIAA SciTech (Jan 2017)
 - NAFEMS Workshop (March 2017)
 - TMS ICME World Congress (May 2017)
- More than 450 professionals participated in the development of 2040 Vision
- Publication of 2040 report Jan/Feb 2018

Vision 2040 Provides A Community Consensus Viewpoint On Technologies Required To Perform Integrated Multiscale Materials And Structures Modeling in year 2040
RCA Standard Test Cases

• Selected after discussions within NASA and with AIAA Turbulence Modeling Benchmark Working Group
 – Test cases possess the relevant flow physics
 – Simple enough to be useful (avoid complex geometries/additional uncertainties)
 – RANS fail to provide accurate solution

• “Best” available test cases, but in no way “ideal”
 – Case 1: “2D” NASA hump
 – Case 2: Axisymmetric transonic bump
 – Case 3: Compressible mixing layer
 – Case 4: Round jets (cold and hot)
 – Case 5: Axisymmetric compression corner

• Issues
 – Not necessarily free of WT/facility effects
 – Scale-resolving simulations require more detailed boundary info than RANS
 – Some cases too old → Exercise caution on level of trust put in the results
 – What quantitative metrics for progress assessment?
 ▪ Define some relevant metrics, but allow some leeway and use judgement
 – Note: No test case for BL transition specified

• Case for new standard/benchmark experiments
 – Leverage advances in measurement techniques
High Performance Computing (HPC)

- HPC hardware is changing rapidly, exascale in next 3-5 years
 - Improve performance of existing CFD solvers (e.g., FUN3D) on the new hardware
 - New solvers (e.g., GFR, Eddy) that more efficiently exploit emerging hardware capabilities

- Summit at ORNL: 122 PFlop/s on Linpack
 - No. 1 on Top 500 list, as of June 2018
 - 4096 nodes = 24,576 GPUs ≈ 20 Pleiades
 - 95% of Summit’s compute is on the GPUs
Eddy Solver

- *Eddy* is an infrastructure based on the spectral-element method for scale resolving simulations
 - Fully implicit space-time, entropy stable formulation
 - 70% of machine theoretical peak on Intel hardware
 - Better match for emerging HPC hardware
 - Less data movement, more flops for the same level of accuracy
 - For high order, same error as low order, for orders of magnitude less CPU time
 - Same memory usage and better efficiency than explicit schemes

POC: Scott Murman (ARC)
<table>
<thead>
<tr>
<th>INSTITUTIONS</th>
<th>NRA TITLE</th>
<th>PROGRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford University</td>
<td>Validation of wall models for LES with application to the NASA Common Research Model</td>
<td>EQWM for CRM. Comparison of EQWM and NEQWM for RCA standard separation test cases.</td>
</tr>
<tr>
<td>University of Texas - Austin</td>
<td>Novel Hybrid RANS/LES Models for Aerodynamic Flows</td>
<td>New hybrid model used to compute NASA hump case.</td>
</tr>
<tr>
<td>Notre Dame University</td>
<td>Benchmark Smooth Body Flow Separation Experiments For CFD Validation</td>
<td>Model designed/fabricated. Two-dimensionality being assured. Data acquisition underway.</td>
</tr>
<tr>
<td>University of Illinois - UC</td>
<td>Benchmark Experimental Measurements of Turbulent, Compressible Mixing Layers for CFD Validation</td>
<td>Facility fab complete. SPIV shows 30% reduction in growth rate at Mc = 0.53. Normal stresses dominate.</td>
</tr>
</tbody>
</table>
Current RCA NRAs - 2

<table>
<thead>
<tr>
<th>INSTITUTIONS</th>
<th>NRA TITLE</th>
<th>PROGRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Wyoming</td>
<td>Development of Scalable Solvers for Current and Emerging Steady-state and Time-dependent Discretizations</td>
<td>Several approaches to reduce time to solution. Parallel time spectral method yields up to two orders reduction in compute time.</td>
</tr>
<tr>
<td>MIT</td>
<td>Swept time-space domain decomposition rule for breaking the latency barrier</td>
<td>Try to break latency barrier using swept decomposition. Factor of 3 achieved for 2D Euler.</td>
</tr>
<tr>
<td>Old Dominion University</td>
<td>Extreme-Scale Parallel Mesh Generation: CFD 2030 Vision</td>
<td>A Multi-Layered Runtime System to implement guaranteed quality mesh generation and error-metric based adaptivity.</td>
</tr>
<tr>
<td>Syracuse University</td>
<td>Distributed Multi-processor Geometry Environment to Support Design and Analysis on Extreme-scale Grids</td>
<td>Unified framework for grid generation, adaptation, and sensitivities as well as flow analysis.</td>
</tr>
</tbody>
</table>
Ongoing RCA NRAs

NASA Research Announcements (NRAs) provide a mechanism to collaborate with academia and industry, a recommendation of the CFD Vision 2030 Study (9 NRAs awarded in response to the 2015 solicitation)

Turbulence Modeling/Simulations:
- Validation of Wall Models for LES with Application to NASA Common Research Model; Stanford U (Parviz Moin)
- Novel Hybrid RANS/LES Models for Aerodynamic Flows; UT Austin (Rober Moser).
- Spatiotemporally Adaptive Variable Fidelity Approach to Modeling and Simulation of Complex Turbulent Flows; U Colorado (Peter Hamlington)

Numerical Methods/Grid Generation:
- Development of Scalable Solvers for Current and Emerging Steady-State and Time-Dependent Discretizations; U Wyoming (Dimitri Mavriplis)
- Swept Time-Space Domain Decomposition Rule for Breaking the Latency Barrier; MIT (Qiqi Wang).
- Extreme-scale parallel mesh generation: CFD 2030 vision; ODU (Nikos Chrisochides).
- Distributed Multi-processor Geometry Environment to Support Design and Analysis on Extreme-scale Grids; Syracuse U (John Dannenhoffer).

CFD Validation Experiments:
- Benchmark Smooth Body Flow Separation Experiments For CFD Validation; U Notre Dame (Flint Thomas).
- Benchmark Experimental Measurements of Turbulent, Compressible Mixing Layers for CFD Validation; U Illinois (Craig Dutton)
RCA NRAs – 5 New Topics in the 2018 Solicitation

Large number of proposals indicates continued academic community interest in RCA research

• Requirements for Aircraft Certification by Analysis
 – Number of proposals = 2

• Accurate and Efficient Models for Scale Resolving Simulations
 – 27

• Sensitivity Derivatives for Chaotic Unsteady Fluid Dynamics
 – 13

• Order N (ln N)^p CFD Solvers for Exascale Architectures
 – 6

• Benchmark Experiments for CFD Validation
 – 9
NASA's Small Business Innovation Research (SBIR) Program provides a mechanism to leverage expertise available at small businesses.

(2 Phase II SBIRs to be awarded in the grid generation area)
(Phase I SBIR proposals under review)

• **Leverages Agency SBIR Funds**
 – CFD Vision 2030 advocacy helped secure the grid generation subtopic

• **SBIR 2017 Phase II Proposals Selected for Award**
 – HeldenSurface: A CAD Tool to Generate High Quality Surfaces (*Helden Aerospace Corporation*)
 – High Order Mesh Curving and geometry Access (*Pointwise, Inc.*)

• **SBIR 2018 Phase I Solicitation Topics**
 – Grid generation for scale resolving simulations
 – Multi-fidelity computational and experimental data fusion
SBIR Phase I Awards on Geometry and Grid Generation

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Proposal TITLE</th>
<th>PM/PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pointwise, Inc.</td>
<td>High Order Mesh Curving and Geometry Access</td>
<td>Richard Matus</td>
</tr>
<tr>
<td>Helden Aerospace Corporation</td>
<td>HeldenSurface: A CAD Tool to Generate High-Quality Surfaces</td>
<td>John Hooker</td>
</tr>
<tr>
<td>D&P, LLC</td>
<td>A Fully Automated Mesh Generation Tool</td>
<td>Lei Tang</td>
</tr>
<tr>
<td>CFD Research Corporation</td>
<td>A Software Tool for High-Order Element Mesh Generation</td>
<td>Silvia Harvey</td>
</tr>
<tr>
<td>Start Date</td>
<td>PI</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>October 2015</td>
<td>Steven Allmaras</td>
<td>Rapid Viscous Aerodynamic Analysis/Design Methodology Utilizing Inviscid Coupling with a 3D Integral Boundary Layer</td>
</tr>
<tr>
<td>October 2015</td>
<td>Dimitri Mavris</td>
<td>Development and Integration of Tools and Methods for Multi-fidelity Structural Modeling and Analysis for Conceptual Design and Optimization of Aerospace Vehicles</td>
</tr>
<tr>
<td>October 2015</td>
<td>Weihua Su</td>
<td>Enhanced Multi-Fidelity Aeroelastic Models for Efficient Airplane Preliminary Design and Optimization</td>
</tr>
<tr>
<td>September 2015</td>
<td>Graeme Kennedy</td>
<td>An Efficient Scalable Framework for Aeroelastic Analysis and Adjoint-based Sensitivities Using FUN3D and TACS</td>
</tr>
<tr>
<td>September 2016</td>
<td>Per-Olof Persson</td>
<td>High-Order Methods for Fluid Structure Interaction</td>
</tr>
</tbody>
</table>

These MDAO NRAs are advantaged by the Air Force Research Lab (AFRL) and NASA LaRC project entitled Sensitivity Analysis for Multidisciplinary Systems (SAMS), initiated in December 2015. As part of this Space Act Agreement, AFRL is providing ~$200K/year to the Computational Aero Sciences Branch to make FUN3D more modular to enable coupling with nonlinear finite element codes. The RVLT project is making similar investments via a contract with the National Institute of Aerospace (NIA) to couple FUN3D with the multi-body code DYMORE for rotorcraft analysis. The T³/NRA and RVLT/NIA PIs are collaborating with the SAMS team.
Ongoing Combustion Modeling NRA Awards

<table>
<thead>
<tr>
<th>Start Date</th>
<th>PI</th>
<th>Title</th>
<th>Institution/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2016</td>
<td>Marcus Herrman</td>
<td>A novel hybrid Eulerian/Lagrangian dual scale LES model for predicting atomization in realistic aircraft combustor fuel injectors</td>
<td>Arizona State University</td>
</tr>
<tr>
<td>December 2015</td>
<td>Tianfeng Lu</td>
<td>Reduced kinetic models with fuel sensitivity for turbulent combustion simulations</td>
<td>University of Connecticut</td>
</tr>
<tr>
<td>January 2016</td>
<td>Mathias Ihme</td>
<td>Development of a Fidelity-Adaptive LES Combustion Model for Predicting Fuel-Sensitivities on Combustion Stabilization and Ignition</td>
<td>Stanford University</td>
</tr>
<tr>
<td>December 2015</td>
<td>Suresh Menon</td>
<td>Multi-Scale Turbulence-Chemistry Closure in Large-Eddy Simulation to Account for Sensitivity to Fuel Composition and Properties</td>
<td>Georgia Tech Research</td>
</tr>
<tr>
<td>August 2016</td>
<td>Venkat Raman</td>
<td>Fuel Sensitive Turbulent Combustion Models for Predicting Flame Stability and Emissions from Aircraft Combustors</td>
<td>University of Michigan</td>
</tr>
</tbody>
</table>
NRA Awards (SFW, AS, & T³)

SFW/AS Awards

<table>
<thead>
<tr>
<th>Year</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA Awards</td>
<td>1 Award</td>
<td>3 Awards</td>
<td>NCE</td>
<td>2 Awards</td>
<td>6 Awards</td>
<td>2 Awards</td>
<td>NCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDAO Awards</td>
<td>1 Award</td>
<td>1 Award</td>
<td>NCE</td>
<td>3 Award</td>
<td>CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion Awards</td>
<td>1 Award</td>
<td>1 Award</td>
<td>NCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaS Awards</td>
<td>1 Award</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls Awards</td>
<td>1 Award</td>
<td>NCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T³ Awards

<table>
<thead>
<tr>
<th>Year</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Awards + 1 FY16</td>
<td>4 Awards + 1 FY16</td>
<td>5 Awards + 1 FY16</td>
<td>1 Award + Option FY16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The "Vision 2040" for Integrated, Multiscale Materials and Structures Modeling/Simulation

The CFD Vision 2030 Study – A Path to Revolutionary Computational Aerosciences

89 proposals currently being reviewed for new round of NRAs to start FY19

May 2018: 20 Active NRA Awards
T³ Technical Challenge Planning

<table>
<thead>
<tr>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>FY25</th>
<th>FY26</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC – Physics-Based Turbulence Models and Simulations</td>
<td>fTC – Eddy Resolving Methods</td>
<td></td>
</tr>
<tr>
<td>eTC – TC – Combustion Modeling (Alternative Fuels)</td>
<td></td>
</tr>
<tr>
<td>eTC – TC – Multidisciplinary Design, Analysis, & Optimization</td>
<td></td>
</tr>
<tr>
<td>Current TCs</td>
<td></td>
</tr>
<tr>
<td>Completed TC</td>
<td></td>
</tr>
<tr>
<td>eTC – TC – High Temperature Materials for Turbine Engines</td>
<td></td>
</tr>
<tr>
<td>eTC – New M&S Work (Matls for Electrified Aircraft, Advanced Manufacturing, etc.)</td>
<td></td>
</tr>
<tr>
<td>eTC – Multifunctional Mtls & Structures</td>
<td></td>
</tr>
<tr>
<td>eTC – Combustion Technologies</td>
<td></td>
</tr>
<tr>
<td>eTC – Propulsion Controls</td>
<td></td>
</tr>
<tr>
<td>eTC – Flight Controls - MCAAD</td>
<td></td>
</tr>
<tr>
<td>eTC – Innovative Measurements</td>
<td></td>
</tr>
<tr>
<td>Planned future TC for Vision 2030</td>
<td></td>
</tr>
<tr>
<td>To be considered in Revolutionary M&S and/or Manufacturing</td>
<td></td>
</tr>
<tr>
<td>All eTCs have clearly defined barriers; project actively planning for future</td>
<td></td>
</tr>
</tbody>
</table>

Critical Aeronautics Technologies (CAT)

Revolutionary Tools & Methods (RTM)

Continual infusion of new ideas - and transition of work to Mission Projects
Databases from Wind Tunnels

Flight Test for Qualification

Flight Test

Wind Tunnel Test

Wind Tunnel Scale CFD

1940

1960

1980

1980

2000

2020

2040

2060

Analysis

Flight Scale CFD

Integrated Test/CFD

Synergistic use of test/computations reduces test requirements

✓ Computations for attached flows nearing maturity.

➢ Airframe propulsion integration challenges test and computations.

➢ Automated geometry modeling and adaptation require robust investment

➢ Chemically reacting and combustion CFD not ready for routine use.

➢ Push toward unsteady separated flow CFD requires advanced algorithms and computer technology.

Coupling of Aerosciences sub-disciplines

Integration with complementary disciplines – Flight Mechanics, GN&C, Structures, Materials, Loads & Dynamics, …

Flight Qualification by Analysis

REVOLUTIONARY COMPUTATIONAL AEROSCIENCES

Aerodynamics – Aerothermodynamics – Aerostructures – Aeroacoustics – Propulsion Integration
Obtain mean and turbulence quantities through a M=2.5 axisymmetric SWBLI of sufficient quantity and quality to be considered a CFD validation dataset. The SWBLI is generated by placing a cone-cylinder in an axisymmetric (pipe) flow. Both 2D and 3D attached and separated flows are considered.

- Simple Geometry:
 - Round pipe with cone-cylinder on centerline.
 - 2D in the mean, but 3D can be created by offsetting cone-cylinder
- Inflow Boundary: Supersonic developing pipe flow (well defined)
- Outflow Boundary: Wholly supersonic
- Redundant measurements:
 - Conventional steady-state and dynamic pressure taps and probes
 - Hot-Wire Anemometry (HWA) (mean and turbulence)
 - Particle Image Velocimetry (PIV)
 - Dynamic Pressure Sensitive Paint (PSP)
 - Dynamic Surface Shear-Stress Film (S3F)
- Comprehensive Uncertainty Analysis

STATUS AND FUTURE WORK:
- Measurements (except PIV) for 2-D configuration are nearing completion.
- Hardware for 3-D configuration is complete and testing has begun.
- A heater has recently been incorporated into the facility for better control of flow conditions (reduced measurement uncertainty).
- Design of PIV system is underway.

POC: David O. Davis (GRC)
Benchmark Smooth Body Flow Separation Experiments for CFD Validation

Archival benchmark experiments on smooth body adverse pressure gradient (APG) turbulent boundary layer (TBL) flow separation for the purpose of CFD validation and model development

ACCOMPLISHMENTS:
- Design, fabrication and assembly of all wind tunnel model components.
- Six wind tunnel entries to-date:
 1. 11/15/16 -1/7/17 (23 days - initial model shakedown and troubleshooting)
 2. 1/23/17-1/27/17 (5 days of testing)
 3. 3/20/17 – 4/27/17 (31 days of testing, establish APG cases to be investigated; ref AIAA paper-2017-4128)
 4. 6/5/17-7/7/17 (24 days of testing; large-scale flow separation)
 5. 9/25/17-10/16/17 (16 days of testing -> ref AIAA paper 2018-0572)
 6. 2/2/18-2/23/18 (15 days – side wall boundary layer documentation and corner flow pattern manipulation)

TASKS REMAINING:
- Acquire additional mean velocity and turbulent stress profiles for both the large-scale and small-scale flow separation cases at multiple spanwise locations.
- Perform oil film interferometry measurements in order to determine shear stress distributions and thereby allow inner-variable scaling.
- Characterize the nature of the transition between separation regimes.

MEASUREMENTS SPECIFIC TO VALIDATION:
- Initial condition TBL profiles obtained at multiple locations.
- Measurement of tunnel side-wall boundary layers.
- Characterization of free stream isotropy and integral macroscales.
- External inviscid velocity boundary condition is measured so that there is no need for mesh modifications for different experiments.
- Measured quantities will be reported at a 95% confidence interval using standard uncertainty propagation methods.

POC: Flint Thomas, Thomas Corke (Notre Dame)
Compressible Mixing Layer Experiments for CFD Validation

CFD validation-quality measurements of the canonical, two-stream compressible mixing layer over a range of convective Mach numbers (i.e., compressibilities) to document effects on growth rate, Reynolds stress field, turbulent large-scale structure, mixing, etc.

- Work completed or in progress: measurements for four convective Mach number cases, $M_c = 0.19, 0.37, 0.54, \text{ and } 0.86$
- Measurements to date concentrated on schlieren and planar laser-sheet visualizations, static and pitot pressure measurements, with emphasis on stereo PIV measurements of mean and turbulent velocity fields
- Work to be completed: similar measurements for $M_c \approx 0.74 \text{ and } 1.00$
- Additional verification measurements of a few cases using hot-wire anemometry (HWA)
- Complete documentation of experimental uncertainty field for all measured quantities

CFD VALIDATION EXPERIMENT DOCUMENTATION:
- Complete documentation of test section as-built geometry through series of drawings posted online
- Complete documentation of the inflow conditions/boundary conditions for each case, especially the boundary layers on all incoming walls to the mixing layer
- Verification of primary SPIV measurements using HWA for a few select cases
- Verification of two-dimensional conditions of mixing layer using end-view visualizations and SPIV measurements at select streamwise locations
- Verification of fully-developed, self-similar conditions of mixing layer using detailed mean flow and turbulence profiles in downstream region
- Complete uncertainty analysis of entire spatial fields of pressure and SPIV mean and turbulence velocity measurements

POCs: Craig Dutton, Greg Elliott (UIUC)

Fig. 1: Typical $(u-U_c)$ instantaneous velocity field measured by SPIV for $M_c = 0.37$

Fig. 2: $M_c = 0.37$ normalized mean streamwise velocity profiles
Further Common Research Model (CRM) Testing

• Characterize the on-body and off-body flowfield for a small scale model of a representative commercial aircraft shape.
• Continue ongoing efforts to acquire a variety of experimental flowfield 3D velocity measurements near wingtip and wing/fuselage junction.
• Acquire a variety of wing and fuselage on-body measurements, employing advanced techniques which include Pressure Sensitive Paint (PSP), Fringe Imaging Skin Friction (FISF), and Particle Image Velocimetry (PIV).

• 3% scale model of CRM in 48” x 32” subsonic wind tunnel at NASA ARC Fluid Mechanics Lab
• Acquire measurements at M~0.15, at angles of attack of 0, 2, 4 degrees

DATA COLLECTED:
• Oil flow on wing and body at 0, 2, 4 degrees
• Skin friction on wing at 2, 4 degrees
• PIV 3 wingtip chords downstream of wingtip at 0, 2, 4 degrees
• Cobra probe matching PIV plane at 0, 2, 4 degrees
• Cobra probe downstream of trailing edge at 0 degrees

REMAINING DATA to COLLECT:
• Cobra probe downstream of trailing edge at 2, 4, degrees
• Inlet conditions of wind tunnel
• Boundary layer measurements upstream of fuselage
• PSP on upper surface of wing at 0, 2, 4 degrees
High Performance Computing

- **NAS at NASA Ames Research Center**
 - Pleiades (7.2 PFlops, 245,000 cores); #17 on the Top 500 list
 - Electra (4.8 Pflops, 78,000 cores)
 - Due to large number of users, NAS resources allow capacity computing only

- **Department of Energy**
 - Gained access to Edison/Cori (NERSC) under ASCR Leadership Computing Challenge Program
 - Parametric studies using up to 42,000 (Edison) and 170,000 (Cori) cores
 - Access provided to Theta (ANL), Cori (NERSC), and Stampede-2 (TACC) Knights Landing systems for collaborative CFD developments

- **Department of Defense**
 - Access to about 10 different machines for collaborative CFD developments
 - Priority access enables runs up to 85,000 cores with just a few hours queue wait
 - Early access to Knights Landing partition of new Onyx system at ERDC enables extensive Xeon Phi testing
 - Scaling studies performed on DoD machines, using up to ~30,000 cores, for the new higher-order finite element scheme in FUN3D

RCA Exploits NASA and Other National Computing Assets for Capacity and Capability Computing, a Recommendation of CFD 2030 Study