The Role of Advanced Materials and Manufacturing in Future NASA Exploration Missions

Michael A. Meador, NASA Game Changing Development Program, michael.a.meador@nasa.gov
Apollo 15

- 66.9 hours on Lunar surface
- 3 EVAs – 10 hours, 36 minutes
- Returned with 6.6 kg of Lunar materials

- Lunar Lander and Command Module constructed from:
 - Aluminum honeycomb with bonded aluminum facesheets
 - Stainless steel honeycomb filled with phenolic ablator for the heat shield

- Crews took everything they needed to complete their mission

- Technical issues, e.g., dust
"An innovative and sustainable program of exploration ..."

“Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations;”

- Space Policy Directive 1 (December 2017)

- **Structurally efficient launch vehicles and spacecraft**
 - Lightweight materials
 - Multifunctionality
 - Damage tolerant

- **Robust habitation and excursion systems**
 - Missions will be longer than Apollo with longer duration and more numerous sorties/EVAs
 - Environment is harsh – dust, radiation, temperature
 - *In situ* resource utilization, including recycling, will be needed
 - In space manufacturing will be needed to create replacement parts, effect repairs
 - Astronaut health management will be more challenging, especially for Mars

- **Materials and chemistry are key to addressing these challenges**
Lightweight Multifunctional Materials

Polymer Matrix Composites

Carbon Nanotube Reinforced Composites

Polymer Aerogels
Composites Being Utilized in SpaceX Vehicles

- Falcon Heavy
- Fairing
- Interstage
- Landing Legs
- Mold for BFR Main Body
If you wonder how NASA's Space Launch System, or SLS, compares to earlier generations of NASA launch vehicles...

- **Statue of Liberty**: 305 ft
- **Space Shuttle**: 184 ft
- **SLS**: 322 ft
- **Saturn V**: 363 ft

SLS will produce 150% more thrust at launch than the space shuttle and 186% more than the Saturn V during ascent.

SLS will launch even more to the Moon than the space shuttle could send to low Earth orbit.

Space Shuttle
- Cargo to low-Earth orbit: 45 tons
- Cargo to the Moon: 7.8 million pounds

SLS
- Cargo to the Moon: 8.8 million pounds

NASA's SLS Block 1 Launch Vehicle
- Core Stage (Liquid Fuel)
- Solid Rocket Booster or SRB (Solid Fuel)
- Engines
- Upper Stage (Liquid Fuel)
- Orion Spacecraft (Astronauts)

www.nasa.gov/sls
Develop and demonstrate critical composites technologies with a focus on weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware to support future NASA exploration missions.

- Improve the analytical capabilities required to predict failure modes in composite structures.
- Support SLS payload adapters and fittings by maturing composite bonded joint technology and analytical tools to enable risk reduction.

Focus on Payload Attach Fitting. Potential for significant reduction in joint mass, part count, assembly time and cost over bonded metallic joints:

- Reduce longitudinal joint mass by 87% (from 927 to 42 lb) and part count by 98% (from 2116 to 40)
- Reduce circumferential joint mass by 62% (from 927 to 358 lb) and part count by 98% (from 1673 to 40)
CTE Project Activities

Fabrication of composite bonded joints for Payload Adapter Manufacturing Demonstration Article

Design Optimization

Materials Production

Composite Testing

Project Manager: John Fikes, NASA Marshall
Carbon nanotubes (CNTs) have remarkable properties:
- Specific strength 150X that of conventional carbon fibers, 100X aluminum
- Elongation 10X that of conventional carbon fibers
- Electrical and thermal conductivities ~10X that of high conductivity carbon fibers

Widespread use of CNTs in aerospace hampered by inability to uniformly and reliably disperse them into polymers and other host materials.

Methods developed by industry allow for scale-able production of CNT reinforcements with potential as drop-in replacements for carbon fiber – could enable as much as 30% reduction in launch vehicle mass.
1st Ever Demonstration of CNT Composites in Aerospace Structure

- Significantly improved the mechanical properties of CNT fibers and fiber reinforced composites – specific tensile strength on par with standard aerospace composites
- Developed flight heritage for CNT composites

Further work is needed to develop composites that more fully exploit the unique properties of CNTs
- Better understanding of CNT growth mechanisms to allow better control of growth conditions (including improved catalysts)
- Modeling and simulation tools
- Surface functionalization chemistries and new resins
Institute for Ultra-strong Composites by Design (US-COMP)

Develop integrated multiscale modeling and simulation, experimental tools, and design methods to enable the development of CNT reinforced composites with:

- 300% increase in tensile properties
- 50% increase in fracture toughness

Technical Monitor: Emilie Siochi, NASA Langley
Aerogels

- Highly porous solids made by drying a wet gel without shrinking
- Pore sizes extremely small (typically 10-40 nm)—makes for very good insulation
- 2-4 times better insulator than fiberglass under ambient pressure, 10-15 times better in light vacuum
- Broad applications in aerospace limited by poor mechanical durability

Cosmic Dust Collector (Stardust)
Insulation on Mars Rovers
Potential Applications in Human Exploration
Polymer Aerogels

Mechanical properties

- Modulus, MPa
- Density, g/cm³

Low thermal conductivity

Test temperature, °C
- 20
- 60
- 100
- 140
- 180
- 220

Thermal Conductivity, mW/m-K
- 0
- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40

Pore structure

Hydrophilic to hydrophobic

Clear to opaque

Components:
- BAX 760 torr
- BAX 0.01 torr
- ODA 760 torr
- ODA 0.01 torr
In Space Manufacturing

What is it?
Develop and demonstrate a capability for robust, reliable, on-demand manufacturing to support needs of future long-duration human exploration missions
• Replacement parts, repairs, new components
• Metals, plastics, and electronics
• Fabrication and recycling of waste materials

Why is it important?
• Resupply mission paradigm used on ISS not feasible for long-duration missions far from Earth
• Addresses significant logistics challenges for long-duration missions by reducing mass, providing flexible risk coverage, and enabling new capabilities that are required for Exploration missions.
In Space Manufacturing - Current Capabilities

1st 3-D Printer (Fused Deposition Modeling) Demonstration in Space (Made in Space – 2014)

Dedicated Additive Manufacturing Facility Established on ISS – 3-D Printing Capability for NASA and Other Customers (Made in Space – 2016)

Refabricator (Integrated Recycler/3-D Printer) Installed and Activated on ISS (SBIR with Tethers Unlimited – 2019)
In Space Manufacturing – Under Development

Multimaterials Fab Lab - Capable of Printing Metals and Electronics (Interlog, Techshot, Tethers Unlimited) – ISS Installation in FY22

How can chemistry help?
• Polymer recycling - Better materials and processes (lower energy, robust properties)
• Converting available resources into feedstock materials (atmosphere, regolith, waste materials)
• Understanding effects of microgravity on materials during fabrication and part durability/performance
• Lower energy fabrication processes (additive)

Medical and Food Packaging Refabricator – Integrated Sterilizer, Recycler, Printer (Tethers Unlimited)

In-Space Manufacturing Materials Development & Design Database (Metals, Electronics, & Biologically-derived feedstocks)
In Situ Resource Utilization (ISRU)

ISRU involves any hardware or operation that harnesses and utilizes ‘in-situ’ resources to create products and services for robotic and human exploration.

Resource Assessment (Prospecting)
- sampling, sniffing, analyzing species

Resource Acquisition
- abrasive environment, low-pressure gases

Resource Processing/Consumable Production
- Chemical processing plant

In Situ Manufacturing
- Processing in-situ feedstock into parts

In Situ Construction
- changing properties of loose in-situ materials into consolidated structural materials

In Situ Energy
- Generation and storage of electrical, thermal, and chemical energy
Nanotechnology and ISRU?

Nanomaterial catalysts or catalyst substrates for increased active area in reactors

Insulation material for hot (reactors) and cold (cryo tanks) components in the not-quite-a-vacuum environment on Mars

Improved or self-healing coatings and electronics for excavation and construction equipment dealing with abrasive materials

Flexible Aerogel insulation

Nanosensors for prospecting, hazard detection, and health mgmt of our chemistry plant

RASSOR excavator delivering regolith

Nanomaterial sorption materials to increase mass adsorbed to mass adsorbent ratio for Mars atmosphere acquisition or during gas separation steps

Sorption pump prototype unit

Sabatier catalyst material after vibration testing

(L) CNT “Electronic Nose”; (R) Nanochemsensor flown on ISS
Space Technology Pipeline

Early Stage
- NASA Innovative Advanced Concepts
- Space Tech Research Grants
- Center Innovation Fund

Mid TRL
- Game Changing Development

Low TRL

High TRL
- Small Spacecraft Technology
- Technology Demonstration Missions

Commercial Partnerships
- SBIR/STTR
- Flight Opportunities
 - Centennial Challenges
 - Regional Economic Development

Technology Pipeline
Engage Academia: tap into spectrum of academic researchers, from graduate students to senior faculty members, to examine the theoretical feasibility of ideas and approaches that are critical to making science, space travel, and exploration more effective, affordable, and sustainable.

NASA Space Technology Research Fellowships
- Graduate student research in space technology; research conducted on campuses and at NASA Centers and not-for-profit R&D labs

Early Career Faculty
- Focused on supporting outstanding faculty researchers early in their careers as they conduct space technology research of high priority to NASA’s Mission Directorates

Early Stage Innovations
- University-led, possibly multiple investigator, efforts on early-stage space technology research of high priority to NASA’s Mission Directorates
- Paid teaming with other universities, industry and non-profits permitted

Space Technology Research Institutes
- University-led, integrated, multidisciplinary teams focused on high-priority early-stage space technology research for several years

Accelerate development of groundbreaking high-risk/high-payoff low-TRL space technologies
Eligibility Requirements for NSTRF

1. Pursuing or seeking to pursue advanced degrees directly related to space technology.

2. Are U.S. citizens or permanent residents of the U.S.

3. Are or will be enrolled in a full-time master’s or doctoral degree program at an accredited U.S. university in fall 2019.

4. Are early in their graduate careers.

Application Components

<table>
<thead>
<tr>
<th></th>
<th>Application Cover Page</th>
<th>Personal Statement</th>
<th>Project Narrative</th>
<th>Degree Program Schedule</th>
<th>Curriculum Vitae</th>
<th>Transcripts</th>
<th>GRE General Test Scores</th>
<th>Three Letters of Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Award Value

<table>
<thead>
<tr>
<th>Fellowship Budget Category</th>
<th>Max value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Stipend</td>
<td>$36,000</td>
</tr>
<tr>
<td>Faculty Advisor Allowance</td>
<td>$11,000</td>
</tr>
<tr>
<td>Visiting Technologist Experience Allowance</td>
<td>$10,000</td>
</tr>
<tr>
<td>Health Insurance Allowance</td>
<td>$1,000</td>
</tr>
<tr>
<td>Tuition and Fees Allowance</td>
<td>$17,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$75,000</td>
</tr>
</tbody>
</table>

NSTRF18: http://tinyurl.com/NSTRF2018
NSTRF17: http://tinyurl.com/NSTRF2017
NSTRF15: http://tinyurl.com/NSTRF2015
NSTRF14: http://tinyurl.com/NSTRF14
NSTRF13: http://tinyurl.com/NSTRF13
NSTRF12: http://tinyurl.com/NSTRF12-OCT
NSTRF11: http://tinyurl.com/NSTRF11-OCT
PI Eligibility Summary:

Both ECF and ESI proposals must be submitted by accredited U.S. universities

Early Career Faculty
- Untenured assistant professor and on tenure track
- U.S. citizen or permanent resident
- No current or former Presidential Early Career Awards for Scientists and Engineers (PECASE)
- No Co-Investigators

Early Stage Innovations
- Tenured or tenure-track faculty from proposing university
- Co-Investigators are permitted
- ≥ 50% of the proposed budget must go to the proposing university
- ≥ 70% of the proposed budget must go to universities

Technical Characteristics:

• Unique, disruptive or transformational space technologies
• Low TRL
• Specific topics tied to Technology Area Roadmaps and the NRC’s review of the roadmaps
• Big impact at the system level: performance, weight, cost, reliability, operational simplicity or other figures of merit associated with space flight hardware or missions

69 Topics

Summary

• Materials are an enabler for future sustainable, long-duration human exploration of the Moon and Mars

• NASA is actively pursuing R&D to address these needs, including intramural research, grants with universities, contracts with industry

• Opportunities exist for students and faculty to become involved in these R&D efforts and help NASA bring humans back to the Moon and, someday, put them on Mars
Examples of Current Supported Work

Lightweight Materials

In Situ Resource Utilization and In Space Manufacturing

Sensors and Diagnostics

Life Support
Potential applications for durable aerogels in aeronautics and space exploration

- Cryotank Insulation
- Heat shielding
- Fan engine containment (Ballistic protection)
- Sandwich structures
- Air revitalization
- Ultra-lightweight, multifunctional structures for habitats, rovers
- Propellant tanks
- Inflatable decelerators
- Insulation for EVA suits, habitats and rovers

Southwest Research Institute, October 13, 2011
Nanopore-Based Gene Sequencing

• Need for real-time sequencing of DNA on ISS
 • Previously samples were returned to Earth for analysis
 • Inform medical decisions (remediation, medical countermeasures, infectious disease diagnosis) and support ISS research
 • Could be adapted for robotic exploration missions to identify life on other planets

• MinION nanopore sequencer provides a low volume/power sequencing capability for ISS
 • ~ 54 cm³, <120 grams, powered via USB port
 • Enables real-time sequencing of DNA, RNA, proteins

Astronaut Kate Robbins
Performs 1st Gene Sequencing on ISS on 8/26/16

MinION Nanopore Sequencer Developed by Oxford Nanopore Technology
Gold Nanoparticle Catalysts Enhance CO Oxidation

- Breathing protection is a critical need for astronauts on ISS in emergencies
 - Conventional “Scotty Bottles” used by firefighters are bulky and heavy and do not provide hours of protection needed
 - Filtering respirators on ISS can remove aerosols, smoke particulates, acid and organic vapors but not CO
 - Conventional oxidation catalysts not effective in cold, wet conditions
- Nano-gold catalysts capable of oxidizing CO at rates >10 that of CO generated in a worst case fire emergency on ISS
 - Certified for use on ISS in 2012
 - Modified version planned for Orion capsule
NASA/Rice Collaborate on Water Purification

- Long duration human space exploration requires compact, low power demand, reliable water purification systems
- NASA Johnson Space Center and the NSF’s Nanotechnology-Enabled Water Treatment Center at Rice University are collaborating to:
 - Evaluate water purification developed for terrestrial applications for use in space exploration
 - Provide opportunities for students to be involved in NASA technology development

Resin coated CDI

Capacitive Deionization Process
Developed for Descaling of Boiler Water
Being Evaluated for Urine Processing

Professor Rafael Verduzco served as host & mentor for the 2018 NASA/NEWT summer intern group