Update: Evaluation of Additively Manufactured Metals for Use in Oxygen Systems

Presented By: Jonathan Tylka
NASA Johnson Space Center
White Sands Test Facility
Aerospace Fire History

- Apollo 1: 1/27/1967
- Apollo 13: 4/14/1970
- The EMU Fire: 9/15/1980
- MIR Fire: 2/24/1997
- Cygnus CRS Orb-3: 10/28/2014
Oxygen Compatibility

- Additive Manufacturing (AM) is currently and will continue to be, used in oxygen systems
- Compatibility studies are a necessity
- Risks if not pursued
 - Equipment Damage, Loss of Mission, Loss of Life
- NASA Centers of Excellence leading efforts
 - White Sands Test Facility (WSTF)
 - Oxygen Compatibility Testing
 - Marshall Space Flight Center (MSFC)
 - Additive Manufacturing
 - Glenn Research Center
 - Metals characterization
 - NASA Engineering Safety Center (NESC)
 - Statistical Design of Experiments
We must manage the risks...

Maximize more compatible materials
- Ignition resistant
- Burn resistant
- Low damage potential

Minimize ignition mechanisms
- What generates heat in my system?
- Control or eliminate

Utilize good practices
- Implement all aspects of oxygen system safety
Maximize

- Testing determines AM flammability performance
 - Note: Flammability is configurationally dependent, not a material property.
- NASA-STD-6001B Test 17/ ASTM G124
 - Upward flammability test
 - 1/8-in. diameter x 6-in. long
 - Unheated
 - Static Pressure
 - >99.5% Oxygen
 - Magnesium/Pyrofuse Promoter
Preliminary Flammability Testing

• Experiment conducted between:
 – Wrought Inconel 718
 – Selective Laser Melting (SLM) Inconel 718 (IN718)

• Statistically designed, efficient, and randomized

• Test specimens manufactured at MSFC

• Material flammability differences noted
 – Result statistically significant but counterintuitive

• SLM IN718 post-build processes need investigation
 – Stress relief (SR)
 – Hot isostatic pressing (HIP)
 – Solutionizing and aging heat treatments (HT)
Preliminary Flammability Results

- SLM IN718 with/without HIP vs Wrought
- All materials had AMS 5664 HT
Various Nb Precipitate Formation

As-Printed/HT

HIP/HT

Wrought/HT
Axial Burning Interface of HIP Sample

Gravity
Composite Energy-Dispersive Spectroscopy (EDS)

Gravity

Oxide (O)

Re-Solidified Zone (RSZ)

Bulk Material (BM)

1mm
NASA White Sands Test Facility

EDS Mapping of Individual Elements

Reference Image

- Ni
- O
- Nb
- Ti
- Al

Each image is labeled with the corresponding element and shows a mapping with a scale of 1mm.
EDS Mapping of Individual Elements

- Scavenging of flammable constituents in RSZ
 - Cr, Al, Ti, Nb (interesting segregation)
- Concentration of non/less flammable constituents in RSZ
 - Ni
- Fe remained distributed in BM, RSZ, and O Zones
EBSD – Burn Area

V1-1 (Printed w/SR)

Recrystallization near melt area

V2-9 (HIP)

Microstructure stays same up to melt area

Analysis: Tim Smith- GRC
Flammability Study - Ongoing

• SLM IN718
• Replicate and expand experiment
• Print parts in same build
• Synchronously SR and HT
• Factors
 – HIP (with/without)
 – Effect of HIP temperature excursion
 • Performed in vacuum furnace
 • Furnace cool vs. quench
 – AMS 5664 HT (with/without)
 – Location on build plate
FY16 Matrix

<table>
<thead>
<tr>
<th>Process</th>
<th>Cooling Rate From Process</th>
<th>Heat Treatment</th>
<th>Sample Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing</td>
<td>N/A</td>
<td>None</td>
<td>13,25,36,37,52,58,80,91</td>
</tr>
<tr>
<td>Printing</td>
<td>N/A</td>
<td>AMS 5664 (Sol/Age)</td>
<td>20,21,30,45,63,72,78,95</td>
</tr>
<tr>
<td>Hot Isostatic Pressing</td>
<td>Furnace Cool</td>
<td>None</td>
<td>12,16,39,50,53,62,79,84</td>
</tr>
<tr>
<td>Hot Isostatic Pressing</td>
<td>Furnace Cool</td>
<td>AMS 5664 (Sol/Age)</td>
<td>18,23,46,49,56,60,81,85</td>
</tr>
<tr>
<td>Vacuum HIP (HIP Heating profile no pressure)</td>
<td>Furnace Cool</td>
<td>None</td>
<td>3,8,32,47,57,64,94,98</td>
</tr>
<tr>
<td>Vacuum HIP (HIP Heating profile no pressure)</td>
<td>Furnace Cool</td>
<td>AMS 5664 (Sol/Age)</td>
<td>19,24,44,48,74,75,76,92</td>
</tr>
<tr>
<td>Vacuum HIP (HIP Heating profile no pressure)</td>
<td>Gas Quench</td>
<td>None</td>
<td>1,4,29,33,59,61,83,87</td>
</tr>
<tr>
<td>Vacuum HIP (HIP Heating profile no pressure)</td>
<td>Gas Quench</td>
<td>AMS 5664 (Sol/Age)</td>
<td>15,17,26,35,55,71,90,100</td>
</tr>
</tbody>
</table>

Test Samples Build

![Test Samples Build Diagram](image-url)

1. 2. 3. 4.
None of process factors studied in the FY16 experiment have a statistically significant effect on flammability performance.

Pressure only significant factor for all treatments.
Comparison to Previous Experiment

- Significant difference in performance between HIP #1 and HIP #2
- Data from preliminary test and second test show comparable data quality
AMSII Flammability Summary

• Additive Manufacturing Structural Integrity Initiative (AMSII)
 – Included flammability performance

• Factors
 – 18 different Inconel 718 powders (HIP Wrap, Full HT)

• Covariates
 – Zone
 – Powder production method
 – Machined vs as printed
 – Green State
 – Chemical composition
 – Virgin vs recycled powder

• Findings
 – Different powders had significant differences in flammability at constant pressure.
 – Composition may matter
 • TiN volume fraction may influence flammability
AMSII 2 Summary

• Factors
 – Second lot of 5 AMSII 1 powders
 – HIP Wrap vs No Wrap
 – Machined vs Not Machined

• Covariates
 – Composition
 – Lot to lot comparisons

• Findings
 – Lots and composition probably matter… a lot… 😞

• Regression model selection with AMSII 1&2 data
Means and 95.0 Percent Tukey HSD Intervals

![Graph showing burn length cm by material-lot](image-url)
Direct Comparison between AMSII 1&2

Means and 95.0 Percent Tukey HSD Intervals

- B1-1
- B1-2
- C1-1
- C1-2
- G2-1
- G2-2
- H1-1
- H1-2

Burn Length cm

Material-Lot
• Apparent interaction with wrapping during HIP and machining. Did we catch first experiment observation?
Regression Model Selection - Composition

Type III Sums of Squares

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F-Ratio</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>2.39042</td>
<td>1</td>
<td>2.39042</td>
<td>5.18</td>
<td>0.0404</td>
</tr>
<tr>
<td>C</td>
<td>5.73464</td>
<td>1</td>
<td>5.73464</td>
<td>12.43</td>
<td>0.0037</td>
</tr>
<tr>
<td>TiN VF</td>
<td>19.0101</td>
<td>1</td>
<td>19.0101</td>
<td>41.21</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-Squared (adjusted for d.f.) = **82.3814 percent**
Flammability Model

- All HIP wrapped, all full HT, for all AMSII 1 & 2 data.
- Three factors (TiN volume fraction, Carbon, and Molybdenum) describe ~80% of flammability response.
- TiN and C seem to heavily influence flammability.
 - Possible NbC and TiN tie up flammable alloying constituents.
 - Appear to account for 80% of flammability in IN718.
 - DISCLAIMER: Data mining caveat. Covariate analysis is not as robust as a designed experiment.
- Mo may be tied up in carbides as well…
Future Flammability Work

- Perform additional materials characterization on tested samples
 - Determine if Nb in transition region is still tied up as NbC
- See if material G2-2 reveals HIP observation
- Independently verify identified flammability factors
 - Design orthogonal experiment to understand composition TiN and C effects on flammability.
- Characterize flammability performance of more common AM materials and build methods
- Publishing papers on current AM flammability findings to date in ASTM STP
- Reach out to computational materials experts for help modeling flammability of alloys.
- Test more materials and factors…
- Help to advance state of the art materials for performance in severe oxygen service.
Minimize

• Particle Impact
 – Most common direct igniter of metals
 – Hazards increase with:
 • Pressure, temperature, velocity, flammable particles
 – SLM Components shed metal particles (Lowreym 2016)
Ignition Study

- Subsonic & Supersonic Impacts on SLM IN718
 - Pressures, temperatures, velocities
- Study effect of AM characteristics on ignition sensitivity
- Factors
 - Wrought vs. SLM
 - Presence or lack of hot isostatic pressing (HIP)
 - Heat treatment (AMS 5664 vs. Annealing)
 - Surface preparation (chemical etching, electropolishing, electric discharge machining, mechanical polishing, rough machined surface)
 - Particulate type (Aluminum, IN718 powder, Sapphire)
 - Particle Velocity (Subsonic, Supersonic)
 - Temperature (300-950 °F)
 - Pressure (1,300 psia-4000 psia)
Selected Supersonic Testing Results

- SLM samples that received HIP and electro polishing lost less mass than HIP samples with either mechanical polishing or chemical etching when impacted.
- SLM HIP samples lost significantly more mass than samples that were not HIP when impacted.
- Heat treatment and annealing was not observed to affect the ignitability of any Inconel 718 sample type.
Results of a 30 test supersonic PI surface preparation experiment using only SLM IN718 comparing surface treatment and HIP at a static pressure of 1300 psia, and an average temperature of 562° F, and a single 2000 μm aluminum ball.
Selected Subsonic Testing Results

- Even without ignition, SLM samples lost more mass than wrought samples.
 - This is likely due to particle silting from the SLM samples during exposure to high flow even after aqueous cleaning.
- SLM powder is highly flammable. When contained in the subsonic particle injector, the powder ignited before injection into the heated flowing gas.
AM feed stock is extremely flammable...
Future Ignition Work

- Replicate results of previous experiment.
- More fully characterize factors affecting ignition in AM materials.
- Perform testing on more AM aerospace materials.
- Perform ignition testing at a component level.
- Quantify representative contamination likely to be generated from SLM components.
 - Perform particle impact tests with representative contamination quantities.
Utilize

• AM production
 – Dedicated machine(s) for each material
 – Prevent cross contamination
• Precision cleaning
 – What is the best method.
• AM component/system design recommendations specific to oxygen systems.
• Assembly
• Operations
• Maintenance
Long-Term Goals

• Identify and characterize major factors that effect AM ignitability and flammability. Including modeling.
• Test more representative aerospace AM metals and methods.
• Test additional ignition mechanisms.
 – Friction, cavitation
• Develop guide for the use of AM in oxygen systems
 – Design
 – Manufacturing
 – Cleaning
 – Assembly
 – Operations
 – Maintenance
Acknowledgements

- **WSTF**
 - Steven Peralta
 - Kyle Sparks
 - Steven Mathe

- **MSFC**
 - Ken Cooper
 - Brian West
 - Arthur Brown

- **GRC**
 - Tim Smith
 - Michael Kloesel

- **NESC**
 - Ken Johnson

- **Organizations**
 - OSMA
 - AMSII

- **Organizations**
 - JSC ICA
 - JSC IRAD
Questions?
Back Up
Scatter plot for $\log(\text{Burn Length})$ and TiN VF