Evaluation of a Dynamic Weather-Avoidance Rerouting Tool in Adjacent-Center Arrival Metering

Miwa Hayashi, Doug Isaacson, and Huabin Tang

NASA Ames Research Center
Moffett Field, California, USA
Presentation Sections

- Introduction
- Simulation
- ATA Error
- Reroutes
- Human Factors
- Conclusion
Presentation Sections

- Arrival Metering in Weather
- Dynamic Routing for Arrivals in Weather (DRAW)
- Relevant Past Work
- Objectives of the Study
Arrival Metering in Weather

- Estimated Time of Arrival (ETA) at Meter Fix is used to assign Scheduled Time of Arrival (STA).

- STA is frozen at Freeze Horizon (FH).

- Weather can disturb ETAs.

- When too many flights show bad STA, metering is switched to Miles in Trail (simpler, but reduced throughput).
Dynamic Routes for Arrivals in Weather (DRAW)

- Is a decision-support tool for Traffic Management Coordinators (TMCs) at en-route facilities (“Centers”)

- Utilizes 4D current & forecast weather data:
 - Corridor Integrated Weather System (CIWS) for the current weather depiction
 - Convective Weather Avoidance Model (CWAM) forecast for weather-avoidance reroute computation

- Proposes Flight Plan route amendments that avoid weather:
 - Going around weather
 - Weather-free shortcut
 - Alternate Meter Fix (disabled in this study)

- [Goal] Allows arrival metering to continue under wider range of weather conditions
Relevant Past Work

- Traffic Management Advisor (TMA) (Swenson, 1997)
- MITRE’s Advanced Flight-Specific Trajectories (AFST) (DeArmon, et al., 2017)

On acceptable thresholds for arrival metering delivery accuracy:
 - Human-in-the-loop simulation evaluations: error < 30-40 sec (Robinson, 2015)
 - Numerical simulations: error std dev < 60 sec in Atlanta Center (Shresta, 2009)

Previous DRAW simulation evaluation (Isaacson, et al., 2018)
 - DRAW use resulted ~16 minutes earlier reroute advisories
 - No evidence was found that DRAW improved arrival metering performance
Objectives of the Study

- Investigate how arrival metering performance in weather was affected by:

 a) Use of DRAW

 b) Interaction of use of DRAW and the freeze horizon (FH) distance

- Observe inter-Center coordination for weather-avoidance and metering operations.
Arrival Metering in Weather
Dynamic Routing for Arrivals in Weather (DRAW)
Relevant Past Work
Objectives of the Study

Introduction
Simulation
ATA Error
Reroutes
Human Factors
Conclusion

Simulated Airspace
Laboratory Setup
Experiment Design
DRAW vs. No-DRAW Condition
Procedure
Simulated Airspace

Atlanta (ZTL) KATL 66 2019 Jacksonville (ZJX) JJEDI Arrival

Gulf of Mexico Atlantic Ocean

Freeze Horizon (Near, 175 nmi) Freeze Horizon (Far, 275 nmi)
Laboratory Setup

TMC (1)

Controller (6)

Pilot (6)

Jacksonville (ZJX) TMC
Atlanta (ZTL) TMC

Reroute request

Radio
Experiment Design

- 2-week study, 10/22/2018 – 11/2/2018

- 16 runs for 2x2x2x2 test-matrix design:
 - DRAW Condition (DRAW vs. No-DRAW)
 - Freeze Horizon (FH) Location (Far vs. Near)
 - Weather Scenario (Weather 1 vs. Weather 2)
 - TMC & Controller Team (Week 1 vs. Week 2)

- 1 Baseline run (clear weather) in each week
DRAW vs. No-DRAW Condition

Functions Available in DRAW Condition

<table>
<thead>
<tr>
<th>Function</th>
<th>DRAW</th>
<th>No-DRAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAW Advisory</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Current CIWS weather on PGUI</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trial Planning: Drag and drop to reroute</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Forecast CWAM conflicts</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Metering impact on TGUI</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Procedure

- 2-hour runs, 9 runs per week (8 test-matrix runs + 1 Baseline)

- TMCs performed in 0-110 minutes, controllers & pilots in 15-120 minutes

- Manual adjustment of frozen STA was allowed at the TMC or controller’s discretion, via any of the 3 methods:
 1. Controller swaps two flights’ STAs
 2. TMC adjusts an STA along a TGUI timeline
 3. TMC reschedules the Meter List (ripples the list)
Presentation Sections

- Arrival Metering in Weather
- Dynamic Routing for Arrivals in Weather (DRAW)
- Relevant Past Work
- Objectives of the Study
- Actual Time of Arrival (ATA) Error
- ATA Error w.r.t. STA at FH
- ATA Error w.r.t. STA at Meter Fix
- Manual Adjustments of STA
- Discussions

Introduction
- Simulated Airspace
- Laboratory Setup
- Experiment Design
- DRAW vs. No-DRAW Condition
- Procedure

Simulation

ATA Error

Reroutes

Human Factors

Conclusion
2 types of errors in the ATA at the Meter Fix:

1) ATA Error with Respect to STA assigned at FH: \(E_{fh} = STA_{fh} - ATA \)

2) ATA Error with Respect to STA indicated at Meter Fix: \(E_{mfx} = STA_{mfx} - ATA \)

- Smaller \(E_{mfx} \) (#2) helps the TRACON work
- Smaller \(E_{fh} \) (#1) may suggest lower Center workload
1) ATA Error with Respect to STA at FH, $|E_{fh}|$

- The means of $|E_{fh}|$ over 30-minute segments (30-60, 60-90, and 90-120 min) were computed.

- Regression found the segment means were significantly larger in No-DRAW, Far FH ($p = 0.023$).

- Cumulative percentage of the ATA errors shows poor accuracy overall, but especially in No-DRAW, Far FH.

- The estimated std devs of the ATA errors were also large, 91 sec (DRAW) and 95 sec (No-DRAW).
2) ATA Error with Respect to STA at MFx, $|E_{mfx}|$

- Regression did not find any significant effect.

- Cumulative percentage of the ATA errors showed both DRAW and No-DRAW runs achieved similarly good metering accuracy performance.

- The estimated std devs of the ATA errors were 29 sec (DRAW) and 42 sec (No-DRAW).
Manual Adjustments of STA

- Increased STA swaps by controllers in No-DRAW runs was found ($p = 0.044$).

- Increased STA adjustments by TMC in No-DRAW runs was found ($p = 0.069$, marginal significance).
Discussions – ATA Error

- The 2 types of ATA errors showed very different pictures.
 1) ATA Error w.r.t. STA at FH (E_{fh}):
 2) ATA Error w.r.t. STA at Meter Fix (E_{mfx}):
 - E_{fh} (#1) was reduced to E_{mfx} (#2) in No-DRAW runs by more manual STA adjustments.
 - The STAs assigned at the FH are coordinated and optimized by the scheduler.
 - Both ATA errors have to be small for successful metering.
Presentation Sections

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Simulation</th>
<th>ATA Error</th>
<th>Reroutes</th>
<th>Human Factors</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival Metering in Weather</td>
<td>Dynamic Routing for Arrivals in Weather (DRAW)</td>
<td>Actual Time of Arrival (ATA) Error</td>
<td>ATA Error w.r.t. STA at FH</td>
<td>ATA Error w.r.t. STA at Meter Fix</td>
<td>Manual Adjustments of STA</td>
</tr>
<tr>
<td>Relevant Past Work</td>
<td>Objectives of the Study</td>
<td>Discussions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction:
- Simulated Airspace
- Laboratory Setup
- Experiment Design
- DRAW vs. No-DRAW Condition
- Procedure

 ATA Error:
- Flight Plan Amendment Locations
- Discussions

Conclusion:
Route Amendment Locations

- The frequencies of the Flight Plan route amendments before and after the FH in each run were counted.

- The frequency of route amendments *after* the FH was significantly higher in No-DRAW, Far FH ($p = 0.014$).
Discussions – Weather Forecast Quality

- The quality of weather forecast is critical:
 - TMC liked having the anticipated weather locations on the PGUI map.

- Potential TMC mistake during high workload periods:

![Diagram showing weather forecast and reroutes.](attachment:image.png)

<table>
<thead>
<tr>
<th>After-FH Freq. per Run</th>
<th>Far DRAW</th>
<th>Near DRAW</th>
<th>Far No-DRAW</th>
<th>Near No-DRAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

23
Presentation Sections

- Arrival Metering in Weather
- Dynamic Routing for Arrivals in Weather (DRAW)
- Relevant Past Work
- Objectives of the Study

Introduction

- Simulated Airspace
- Laboratory Setup
- Experiment Design
- DRAW vs. No-DRAW Condition
- Procedure

Simulation

- Actual Time of Arrival (ATA) Error
- ATA Error w.r.t. STA at FH
- ATA Error w.r.t. STA at Meter Fix
- Manual Adjustments of STA
- Discussions

ATA Error

- Controller Workload
- TMC Workload
- Center Coordination

Reroutes

- Flight Plan Amendment Locations
- Discussions

Human Factors

Conclusion
Controller Workload

- The sector controllers’ post-run NASA TLX workload ratings (unweighted average of the subscale ratings) were higher in No-DRAW, Near FH ($p = 0.005$).

![NASA TLX Rating Chart]

- Far DRAW: Low
- Near DRAW: Low
- Far No-DRAW: High
- Near No-DRAW: High
TMC Workload

- The Atlanta TMCs’ real-time workload ratings were recorded every 10 minutes.
- Simplified Subjective Workload Assessment Technique (S-SWAT) scale was used.
- In 70-90 scenario-elapsed min segment (heavy traffic), the TMC workload was significantly higher when DRAW was not provided ($p = 0.008$).
Center Coordination

- In this study:
 - Atlanta (ZTL) TMC was the user of the DRAW.
 - Jacksonville (ZJX) TMC provided consultation.

- In field operation, however, ZJX should be the DRAW user.
 - Most weather-avoidance reroutes occurred in the ZJX airspace.

- Coordination when the responsibilities for weather avoidance and arrival metering fall into 2 different Centers?
 - A technological solution to enable the relevant Centers and the Command Center to view, discuss, and modify the reroute may be needed.
Presentation Sections

- Arrival Metering in Weather
- Dynamic Routing for Arrivals in Weather (DRAW)
- Relevant Past Work
- Objectives of the Study

- Actual Time of Arrival (ATA) Error
- ATA Error w.r.t. STA at FH
- ATA Error w.r.t. STA at Meter Fix
- Manual Adjustments of STA
- Discussions

- Controller Workload
- TMC Workload
- Center Coordination

Introduction
- Simulated Airspace
- Laboratory Setup
- Experiment Design
- DRAW vs. No-DRAW Condition
- Procedure

Simulation
- ATA Error

ATA Error Reroutes
- Flight Plan Amendment Locations
- Discussions

Human Factors
- Benefits of DRAW
- Other Takeaways
- Future Work

Conclusion
Benefits of DRAW Use

- Some DRAW benefits were observed regardless of the FH locations:
 - Reduced number of manual STA swaps
 - Reduced TMC workload (when the traffic volume was high)

- Some DRAW benefits were robustness to the FH locations:
 - ATA errors w.r.t. the STA at the FH ($|E_{fh}|$)
 - The number of reroutes after the FH
 - Controller workload

- The robustness benefits in advanced metering (e.g., Extended Metering).
 - E.g., fewer FHs further apart
Other Takeaways

- For successful arrival metering operation, ATA errors w.r.t. both the STA at FH and the STA at Meter Fix must be small.

- The DRAW benefits rely on good weather forecast.

- Clear strategy for inter-facility communication and coordination is needed.
Future Work

- Human-in-the-loop simulation demonstration of the DRAW software on the FAA’s Time-Based Flow Management (TBFM) system (July, 2019)

- Technology Transfer to the FAA (September, 2019)
Thank You

Miwa.Hayashi@nasa.gov