Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

A Comparison of Two Terminal Area Detect and Avoid Well Clear Definitions

Presented to: AIAA Aviation 2019
• Unmanned Aircraft Systems (UAS) Integration into the National Airspace System (NAS) Project
 – Researching how to overcome technical barriers associated with the operation of UAS in civil airspace [above 500ft AGL]
 – One emphasis has been on the development of Detect and Avoid (DAA) technologies and procedures

• A DAA system would allow UAS to comply with the ‘see and avoid’ requirements [14 CFR Part 91] in manned aviation
 – The requirements authorize manned pilots to maneuver off their route to avoid potential/perceived collision hazards; i.e., maintain well clear

• To be applied to UAS operations, well clear had to be mathematically defined
 – “DAA well clear” (DWC) was initially defined for en-route operations
 • I.e., transitioning through Class E/D/G to Class A; explicitly excluded operations in and around airports
 – Defined through RTCA Special Committee 228 (SC-228) Phase 1 DAA Minimum Operational Performance Standards (MOPS)
 – DAA system includes alerting and guidance to help pilot determine when a maneuver is necessary
• Phase 2 of RTCA SC-228’s DAA MOPS expands the scope to include terminal area operations (Class C, D, E, and G airports)
 – Initial research attempted to apply the Phase 1 DAA well clear definition and alerting/guidance requirements to the terminal environment
 – The en-route DAA well clear hazard zone = 4000ft lateral, 450ft vertical, and 35sec modified Tau (approx. time to closest point of approach)
 • Incorporated ATC expectations and TCAS II interoperability

• A human-in-the-loop (HITL) simulation by these authors had pilots fly a Phase 1 UAS into a Class D airport (Sonoma County Airport [KSTS])
 – Pilots flew instrument and visual approaches
 – In some of the approaches a conflict was scripted to occur between airport traffic and the UAS
 – **Primary research question:**
 • How well can pilots maintain appropriate separation against traffic using the Phase 1 en-route DAA well clear definition?
Previous Research

• The results demonstrated the poor fit of the Phase 1, en-route DAA well clear definition in the terminal area

• The relatively large size of the Phase 1 definition led to an exceedingly high number of DAA alerts
 – As a result pilots had a hard time judging when a maneuver was truly necessary
 – Led to a much higher number of high-severity losses of DAA well clear than had been seen in earlier, Phase 1 research

• The DAA Corrective alert level was also shown to be less useful in the terminal area
 – The Corrective alert is designed to facilitate ATC coordination prior to maneuvering to maintain DAA well clear
 – ATC did not expect UAS pilots to coordinate with them prior to maneuvering
 – Corrective alerts often lasted less than 15sec
Purpose: investigate 2 new DAA well clear definitions tailored to the terminal environment

- The candidates were based on expected traffic pattern characteristics
- 2 aspects of the Phase 1 DAA well clear definition were identified as needing modification to better conform to standard terminal area operations:
 1. Reduce the horizontal threshold: 4000ft is too wide & will routinely alert against VFR traffic on the downwind leg of the traffic pattern
 2. Reduce the modified Tau (modTau) component: 35sec is too conservative & will alert too quickly against intruders that are maneuvering near the airport

Research Questions:
1. Are there meaningful differences between the 2 candidate definitions?
2. Is the Corrective alert useful with the new definitions?
Experimental Design

• Independent Variables:

 1. DAA Well Clear Definition (2 levels; within-subjects):
 • **No Tau** = terminal area definition does not include modTau in its criteria
 • **With Tau** = terminal area does include modTau

<table>
<thead>
<tr>
<th>DAA Well Clear Parameters</th>
<th>No Tau</th>
<th>With Tau</th>
<th>Phase 1 (En-Route)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Threshold</td>
<td>1500ft</td>
<td>1500ft</td>
<td>4000ft</td>
</tr>
<tr>
<td>Vertical Threshold</td>
<td>450ft</td>
<td>450ft</td>
<td>450ft</td>
</tr>
<tr>
<td>modTau</td>
<td>N/A</td>
<td>15sec</td>
<td>35sec</td>
</tr>
</tbody>
</table>

 2. Alerting Configuration (2 levels; between-subjects):
 • **No Corrective** = No DAA Corrective alert or guidance, all other alerting/guidance remains
 • **With Corrective** = Full Phase 1 MOPS DAA alerting and guidance structure (Class I)
Alerting Criteria

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Pilot Action</th>
<th>Time to Loss of DWC</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
</table>
| ![Warning Alert Symbol] | Warning Alert | • Maneuver now to avoid a loss of DAA well clear
• Notify ATC as soon as practicable after taking action | 30 sec | “Traffic, Maneuver Now” x2 |
| ![Corrective Alert Symbol] | Corrective Alert* | • Coordinate with ATC then maneuver to avoid a loss of DAA well clear | 45 sec | “Traffic, Avoid” |
| ![Preventive Alert Symbol] | Preventive Alert | • Intruder nearby in altitude
• Corrective action should not be required | 45 sec | “Traffic, Monitor” |
| ![Guidance Traffic Symbol] | Guidance Traffic | • Traffic is generating guidance bands outside of current course | X | N/A |
| ![Remaining Traffic Symbol] | Remaining Traffic | • Traffic within sensor range | X | N/A |

Corrective alert only present in the With Corrective alerting configuration
Test Setup

- Ground control station (GCS) contained:
 1. **Viewer Tool** – contains approach plate & airport facility directory (AFD)
 2. **Tactical Situation Display (TSD)** – DAA information and vehicle control interfaces
 3. **Right Panel** – landing checklist and additional info
 4. **Voice communication panel** – touchscreen, transmit/receive on select freqs.
Sonoma County Airport (KSTS)

- Class D
- Runway 14/32
 - Length = 6000ft x 150ft
 - RNAV (GPS)
- Elevation = 129ft
- Traffic Pattern = 1150ft
- Downwind lateral offsets:
 - Left = 1.5nm (~9000ft)
 - Right = 0.5nm (~3000ft)
- Runway 20/02
 - Not used

Traffic Pattern Altitude = 1150ft
3NM (WP1) to RW14 (WP2) = 3nm
RW14 (WP2) to RW32 (WP3) = 1nm
Simulation Components

• Pseudo-pilots monitored and managed all manned traffic (IFR & VFR)
 – Multi-Aircraft Control System (MACS) software suite
• Air Traffic Control managed UAS and manned traffic
 – Tower controller managing Santa Rosa (KSTS)
 – Center controller managing Oakland Center (ZOA 40/41)
 – Sector traffic modeled using real sector activity and data
• All participants communicated via push-to-talk headsets
 – KSTS Tower frequency: 118.50
 – Oakland Center frequency: 127.80
 – KSTS ATIS: 120.55
• Participants flew 2 types of approaches under Instrument Flight Rules (IFR)
 – Instrument (RNAV GPS) Approach
 – “Visual” Approach

• Operated a simulated MQ-9 (Reaper; Group 5)
 – 65ft wingspan
 – 110kts cruise speed
 – 1000 FPM climb/descent rate
 – 3°/sec turn rate
Instrument Approach Notes:
• Final approach coarse offset 15°
• Missed approach procedures = climb to 5000ft, fly runway heading (143°)

“Visual” Approach Notes:
• Airport “in sight” 10-12nm from runway
• Line up for 3nm final stabilized approach
• Traffic pattern @ 1150ft
• Go-around = climb to 1150/2000ft
Scenarios

• Encounter Type
 – **Turn Into** = traffic blunders into us on final and is intended to lead to NMAC without UAS pilot response
 – **Turn In Front** = traffic turns in front of UAS with sufficient separation (~1.5-2nm) to land safely (turn is coordinated w/ Tower)
 – **Unscripted** = no encounter is scripted to occur but traffic expected to be on downwind as UAS is on final

• Pilots flew 4 approaches per trial
 – 1 Turn Into & 1 Turn In Front per trial
 – All other traffic considered Unscripted
Participants

- 16 UAS pilot participants (avg. age = 33 years)
 - All IFR rated with manned & unmanned flying experience
 - Manned experience = avg. 1000 civilian flight hours, 1600 military flight hours
 - Unmanned experience = avg. 500 civilian flight hours, 700 military flight hours
 - 2 retired tower controls served as tower controller confederates
RESULTS

ALERTING PERFORMANCE...
LOSSES OF DAA WELL CLEAR...
MANEUVER PREFERENCES...
DAA Alerting Performance

• The *With Tau* candidate alerted more frequently to all alert types
 – Biggest difference was against Corrective alerts
• Driven by how often **Unscripted** traffic triggered an alert
 – The 2 definitions alerted (nearly) identically against the scripted encounter types (Turn Into & Turn In Front)

![DAA Alerting Performance Diagram](image-url)
• Corrective alerts were particularly short in the *With Tau* DAA well clear definition
 – Frequently only lasted the *minimum* duration (4 seconds)
 – Not enough time to coordinate with ATC

• Warning alerts tended to last longer in both DAA well clear definitions
Losses of DAA Well Clear

- Proportion of losses of DAA Well Clear (LoDWC) =
 - # of LoDWC / # aircraft that generated a DAA Corrective or Warning

- Pilots were twice as likely to lose DAA well clear against the **Turn Into** encounter in the *With Tau* condition
 - Larger hazard zone made it harder for pilots to avoid separation violation
• With Tau condition resulted in more losses of DAA well clear that were effectively unavoidable:

<table>
<thead>
<tr>
<th>Time to Loss of DAA Well Clear</th>
<th>No Tau</th>
<th>With Tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 15 sec</td>
<td>1/8 (13%)</td>
<td>8/15 (53%)</td>
</tr>
<tr>
<td>Less than 5 sec</td>
<td>0</td>
<td>5/15 (33%)</td>
</tr>
</tbody>
</table>

• Product of the larger size of its hazard zone
The two DAA well clear definitions resulted in very similar types of maneuvers

- Exception being a larger number of speed decreases against Unscripted encounters in the *With Tau* condition
- Speed changes *not* considered disruptive
• Pilots made the greatest number of maneuvers when the *With Corrective* alerting condition was paired with the *With Tau* DAA well clear definition
 – Increased ~30% relative to the other 3 conditions
Conclusions

• With Tau candidate led to more:
 – DAA alerts against Unscripted encounters
 – Short-duration Corrective alerts
 – Unavoidable losses of DAA well clear against the Turn Into encounter
 – Maneuvers against Unscripted traffic (although it was typically non-disruptive)

• No Tau candidate determined to be a better fit, however:
 – Losing DAA well clear against the No Tau definition should be considered a more severe/hazardous loss of separation

• Corrective alert level continued to show limited utility
 – Short duration Corrective alerts with both candidates, particularly With Tau

• Future work needed to investigate **when to switch** from the Phase 1/en-route definition to the terminal area definition
QUESTIONS?
CONRAD.RORIE@NASA.GOV
BACKUP
DAA Alerting & Guidance

No Corrective

- Preventive (Truth) Alert
- Inner Range Ring
- Altitude Tape

With Corrective

- Preventive (Truth) Alert
- Inner Range Ring
- Altitude Tape

Corrective (Truth) Alert

- Inner Range Ring
- Altitude Tape
DAA Alerting & Guidance

No Corrective

Warning (Truth) Alert

Regain DWC Guidance

With Corrective

Warning (Truth) Alert

Regain DWC Guidance
• Generic MQ-9 Reaper
 – Speed:
 • Cruise: 110 knots
 • Landing: 90-110 knots
 • Max: 200 knots
 • Min: 70 knots
 – Climb/Descent Rate:
 • 1000ft/min (default)
 • Captures 3° glide slope on final
 – Turn Performance:
 • Max Roll: +/- 20°
 • Turn Rate: 5°/sec
Training on DAA System

• Pilots trained first on the ground control station followed by training on the DAA system
 – Trained on the meaning of each alert/guidance type in their given configuration
 – Practice en-route scenario flown with conflicts & ATC in-the-loop

• Pilots trained last on how to fly the given approach
 – 2 practice approaches flown, one with a scripted conflict

• Informed that a DAA system has been specifically developed to support terminal operations
 – Told the hazard zone was 1500ft x 450ft (did not explain tau component)

❖ Told to use the DAA system to maintain DAA well clear from traffic in the terminal environment (i.e., expected to utilize the alerts/guidance)