Low-dose Caffeine Administration During Acute Sleep Deprivation Eliminates Visual Motion Processing Impairment, but Does Not Improve Saccadic Rate

Erin E. Flynn-Evans PhD MPH\(^1\), Terence L. Tyson\(^2\), Patrick F. Cravalho PhD\(^3\), Nathan H. Feick\(^3\), Leland S. Stone PhD\(^2\)
\(^1\)Fatigue Countermeasures and \(^2\)Visuomotor Control Laboratories, Human Systems Integration Division, NASA Ames Research Center,
\(^3\)San Jose State University Foundation, NASA Ames Research Center.

INTRODUCTION

- Oculomotor behavior and Visual Motion Processing vary with time awake:
 - Pursuit initiation and steady-state gain reduced,
 - Saccadic rate increased to compensate, and
 - Precision in direction/speed processing reduced.
- Low-dose caffeine (~0.3 mg/kg) is associated with increased alertness and performance on visual reaction time tasks (Wyatt et al. 2004).
- We hypothesized that the impairment of oculomotor and visual metrics associated with time awake would be mitigated by low-dose caffeine administration.

METHODS

- Healthy participants (mean age = 25.0, ±5.6) completed an overnight laboratory sleep-deprivation constant routine study (Mills et al. 1978) with (N = 9) or without (N = 12) caffeine administration.
- Two-week at-home pre-study schedule with 8.5 hours in bed with regular timing, verified by actigraphy, call-ins, and sleep logs.
- Comprehensive Oculomotor Behavioral Response Assessment (Liston & Stone, 2014; Figure 1)
 - Participant required to track constant velocity target motion across the screen for ~1 second (radial Rashbass step-ramps).
 - Motion onset at unpredictable time and location with unpredictable direction and speed.
 - All directions covered in 2º steps.
 - Speeds of 16, 18, 20, 22, or 24 deg/s.
 - Data-collection runs administered 2-5 times during the day and hourly from habitual bedtime until morning.
 - High-speed eye-tracking system used to measure and compute 12 metrics per trial with 180 trials per run.

RESULTS

- Acceleration and gain of pursuit, saccadic rate, proportion smooth, peak velocity (slope & intercept), as well as direction and speed noise, all showed significant linear trends as a function of time awake across a 24-hr period, without caffeine administration (Stone et al. 2019).
- ANCOVA comparison of the caffeine and no-caffeine trends showed that the linear trend was eliminated for direction (p < 0.05) and speed (p < 0.005) noise, and approximately halved for pursuit gain (p < 0.006) and proportion smooth (p < 0.005).
- Caffeine administration was associated with a linear increase in saccadic amplitude with time awake (p < 0.003).

CONCLUSIONS

- Caffeine was protective of visual motion processing during sleep-deprivation and circadian misalignment with precision remaining at baseline levels overnight under low-dose caffeine.
- Caffeine was only partially protective of pursuit gain and proportion smooth, but enabled a compensatory increase in saccadic amplitude with time awake not seen without caffeine.
- While the amplitude of catch-up saccades increased only with low-dose caffeine, the increase in saccadic rate with time awake remained the same with or without caffeine.
- We conclude that the systematic impairment of the precision of visual motion processing with time awake was largely a homeostatic effect, while time-awake trends on tracking gain may have reflected a mixture of homeostatic and circadian effects thus are only partially mitigated by caffeine.

REFERENCES

Supported by the Force Health Protection Program of the Office of Naval Research (SAA 402925)