Airspace Safety Threshold Study:
NAS-wide Encounter Rate Evaluation using Historical Radar Data and ACES

NASA Ames Research Center
Marcus Johnson
David Thipphavong
Chunki Park
Confesor Santiago
Eric Mueller
Outline

• Analysis Overview and Definitions
• Simulation Setup
 – Traffic Scenarios
 – UAS Missions
 – ATC-like Mitigation Model
• Study Results
 – Analysis 1: Encounter Rates of Current Operations using Historical Data
 – Analysis 2: Encounter Rates of Proposed UAS Missions using NAS-wide Simulation
 – Analysis 3: Investigate effect of ATC mitigation on UAS-VFR encounters
• Conclusions
Unmitigated Encounter Rate Evaluation

Analysis 3
- ATC Conflict Mitigation Model

Analysis 1
- Air Defense Radar Data

Metrics
- Airborne Encounter Loss of Well Clear

ACES: Flight plan and NAS-agent modeling system

NAS-wide Simulation

Processing

Analysis 2 & 3
- UAS Models
- UAS Mission Profiles
- Air Defense Radar Data

Results
- Encounter Rates
- Altitude

RTCA Special Committee 228
Airborne Encounter Definition

\[\tau_{mod} = \frac{-R_{xy}^2 - DMOD^2}{\dot{R}_{xy}R_{xy}} \]

Self-Separation Threshold (SST)

Airborne Encounter

\[0 \leq \tau_{mod} \leq SST \]

\[|\Delta h| \leq ZTHR \]

\begin{tabular}{|c|c|c|}
\hline
SST [s] & ZTHR [ft] & DMOD [ft] \\
\hline
100 & 2000 & 4000 \\
\hline
\end{tabular}

Time to Closest Point of Approach

\[t_{CPA} \]

RTCA Special Committee 228
Airspace Concept Evaluation System

National Traffic Management

Regional Traffic Management

Local Approach and Departure Traffic Management

Airport and Surface Traffic Management

NAS-Wide Simulation Environment
- Gate-to-gate ATM operations
- Full flight schedule
- Sector and Center Models
- Airspace Procedures

Agent-Based Modeling
- Air Traffic Controller Decision Model
- Traffic Flow Management Model
- Historical Radar Data Playback
- Detect and Avoid System

Trajectory Modeling
- Aerodynamic Models
- Customizable Uncertainty Characteristics
- Diverse UAS Models
- Pilot Behavior Models

RTCA Special Committee 228
84th Squadron Air Defense Radar Data

- Data is processed as a single day in the NAS (24 hours starting at 0 UTC)
- The simulation runs were chosen across 4 seasons in 2012
- The data is NAS-wide
 - (Note: sections of the interior of the US have limited coverage in some areas).
- 21 Days Total
Processing Radar Data

• Algorithm 1: IFR and cooperative VFR
 – Collected raw data (Mode C transponder code, altitude)
 – Generate tracks using a minimum spanning tree based clustering algorithm
 – Tracks are uniquely identified and then smoothed using a Kalman Filter

• Algorithm 2: Non-cooperative VFR (developed by Honeywell, under contract with NASA)
 – Collected raw data (search only)
 – Track Association Method to generate tracks and smoothed using a Kalman filter
 – Altitudes are assigned using a Gamma distribution (generalized from ARSR-4 position report distributions)
UAS Missions Overview

Overall Characteristics from 18 Missions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Aerosonde</th>
<th>Global Hawk</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight Duration</td>
<td>1 Hour</td>
<td>20 Hours</td>
</tr>
<tr>
<td>Flights Per Day</td>
<td>20</td>
<td>8,000</td>
</tr>
<tr>
<td>Cruise Altitude</td>
<td>2,000 ft</td>
<td>31,000 ft</td>
</tr>
</tbody>
</table>

Flight Pattern
- Grid Pattern
- Circular Loitering
- Point-to-point KXYZ

- Air Quality Monitoring
- Cargo Transport
- Flood Mapping
- Atmospheric Sampling
- Wildfire Detection and Reconnaissance
- On-Demand Air Taxi
ATC-Like Mitigation Model (AutoResolver)

• Lineage as a decision support tool for air traffic controllers.
 – Autoresolver has been used in fast-time and human-in-the-loop (HITL) evaluations.

• Attempts to resolve conflicts on the 1-8 minute time horizon
 – Suggests maneuvers based on minimum delay and heuristics derived from feedback from HITL evaluations.
 – Maneuvers include: path stretch, direct-to, step altitude, temporary altitude, and speed change

![Diagram](image.png)
Analysis 1: Encounter Rate from Historical Radar Data

Objective:
Compute Airborne Encounter Rate for:
- IFR vs. IFR
- IFR vs. Cooperative VFR
- IFR vs. Non-cooperative VFR

Air Defense Radar Data

Metrics
- Loss of Well Clear
- Airborne Encounter

Processing

Results
- Encounter Rates
- Altitude
Analysis 1

Results
Encounter Rates based on Historical Data

Airborne Encounters per IFR Flight Hour

- **IFR**: 2.044
- **Cooperative VFR**: 0.372
- **Non-Cooperative VFR**: 0.174
- **Overall**: 2.591

Legend:
- **IFR**: Green
- **Cooperative VFR**: Blue
- **Non-Cooperative VFR**: Orange
Analysis 2: Encounter Rate from NAS-wide Simulation

Objective:
Compute Airborne Encounter Rate for:
- UAS vs. Cooperative VFR
- UAS vs. Non-cooperative VFR

Metrics
- Loss of Well Clear

Analysis 2
- UAS Models
- UAS Mission Profiles
- Air Defense Radar Data

NAS-wide Simulation

Processing

Results
- Encounter Rates
- Altitude

Objective: Compute Airborne Encounter Rate for:
- UAS vs. Cooperative VFR
- UAS vs. Non-cooperative VFR

Metrics
- Loss of Well Clear

Analysis 2
- UAS Models
- UAS Mission Profiles
- Air Defense Radar Data

NAS-wide Simulation

Processing

Results
- Encounter Rates
- Altitude

RTCA Special Committee 228
Analysis 2

Results
Encounter Rates based on Simulation

- **Cooperative VFR**: 0.200
- **Non-Cooperative VFR**: 0.025
- **VFR**: 0.225

Encounter rate per UAS flight hour
Analysis 3: Encounter Rates with ATC Intervention

Objective:
Check assumption that ATC reroutes of UAS and IFR aircraft for separation are infrequent and have negligible effect on UAS-VFR encounter rates.

Analysis 3
ATC Conflict Mitigation Model

Metrics
Airborne Encounter
Loss of Well Clear

Analysis 3
UAS Models
UAS Mission Profiles
Air Defense Radar Data

NAS-wide Simulation
Processing

Results
Encounter Rates
Altitude

Objective:
Check assumption that ATC reroutes of UAS and IFR aircraft for separation are infrequent and have negligible effect on UAS-VFR encounter rates.
Analysis 3 Approach

• Proxy for ATC conflict mitigation (i.e., aircraft-to-aircraft separation): Autoresolver

• 4 Days were analyzed (January 11, April 21, July 17, and October 6, 2012)

• Autoresolver conflict detection
 – Identifies conflicts (5 nmi/1000 ft):
 • UAS vs manned IFR
 • Two manned IFR
 – No uncertainty

• Autoresolver conflict resolution
 – Develops conflict resolution maneuvers for the two conflict types above to maintain 5 nmi/1000 ft separation
 – Maintains smaller separation standard of 1.5 nmi/500 ft for:
 • UAS vs VFR
 • Manned IFR vs VFR
Analysis 3

Results
Encounter Rate Comparison with and without ATC-like Mitigation

<table>
<thead>
<tr>
<th>Month</th>
<th>Percentage Difference in UAS-VFR Encounter Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 11</td>
<td>0.537</td>
</tr>
<tr>
<td>Apr 21</td>
<td>1.311</td>
</tr>
<tr>
<td>Jul 17</td>
<td>1.326</td>
</tr>
<tr>
<td>Oct 6</td>
<td>1.074</td>
</tr>
<tr>
<td>Overall</td>
<td>1.072</td>
</tr>
</tbody>
</table>

The diagram shows the comparison of encounter rates with and without ATC-like mitigation across different months.
Conclusions

• Three analyses were conducted using recorded VFR traffic.
 – 21 days for Analysis 1 and 2
 – 4 days for Analysis 3
• 18 UAS missions were used in Analysis 2 and 3.
• Results indicate:
 – Overall encounters occur approximately once every 22 minutes.
 – Encounters between IFR and VFR occur approximately once every 1.8 hours
 – Encounters could occur between UAS and VFR approximately once every 4.4 hours
 – ATC conflict mitigation between UAS and IFR conflicts would be infrequent enough to change the encounter rate between UAS and VFR.
Questions

Marcus Johnson
marcus.johnson@nasa.gov