SEISMOMETER TO INVESTIGATE ICE AND OCEAN STRUCTURE (SIIOS)

S. HOP BAILEY, RENEE WEBER, DANIELLA DELLAGIUSTINA, VERONICA BRAY, BRAD AVENSON, NICHOLAS SCHMERR, ANGELA MARUSIAK, PETER DAHL, ERIN PETTIT, MATTHEW SIEGLER, G. WES PATTERSON, CLIVE NEAL, KRIS ZACNY, NAOMI MURDOCH
WHAT IS SIIOS?

• The Seismometer to Investigate Ice and Ocean Structure (SIIOS) is a NASA-funded instrument maturation effort to develop a seismometer for inclusion on a landed mission to Europa.

• The Europa Lander Mission includes a seismic instrument in the baseline in both the 2012 and 2016 JPL Lander Studies.

• Objectives for this instrument usually include:
 • Measuring the depth of the ice and water layers (and hence the internal structure of Europa).
 • Determining the proximity to any intermediate water layers.
 • Determining the local properties of the ice shell proximal to the landing site.

• ~30 day surface mission.
QUAKES ON EUROPA?

- Naturally-generated low-frequency seismic waves resulting from fracture propagation, fault movements, and tidal effects propagate over great distances in ice.
- This enables detection of the ice-water boundary and the sounding of liquid water pockets within the ice layer, at distances on the scale of Europa.
QUAKES ON EUROPA?

- Naturally-generated low-frequency seismic waves resulting from fracture propagation, fault movements, and tidal effects propagate over great distances in ice.
- This enables detection of the ice-water boundary and the sounding of liquid water pockets within the ice layer, at distances on the scale of Europa.
EXPECTATIONS FOR SEISMICITY ON EUROPA

• Estimates from tensile cracks, normal and strike slip faults suggest potential Mw 5.2 events

• Deep “moonquakes” related to tidal stresses (Mw~3) were revealed in the Apollo seismic data

• Tidal stresses on Europa are estimated to be 8-20x larger than on the Moon

• Detectable impacts are estimated at 0-20 per year are not likely to be observed be a seismic instrument deployed for less than one year

• Quakes generated in the rocky part?

• Seismic noise models of Europa are an area of on-going research (e.g. we really don’t know!)
• The Silicon Audio instrument integrates the mechanics of a conventional geophone with a miniaturized laser interferometer system

• Captures signals across a wide bandwidth of frequencies (0.005–600 Hz)

• Large dynamic range —183 dB compared to Apollo’s 60 dB.

• Ultralow distortion (≤ 0.03%)

• 40-degree tilt-insensitive in Europa’s low-gravity field and calibrated to work in any orientation (omni-tilt).

• Low self-noise

• Low mass
ANALOG FIELD EXPERIMENTS

• Our team has conducted field analog measurements of terrestrial seismic events in ice, with the following goals:
 • Assess performance of an ‘in-vault’ seismometer
 • Demonstrate the ability of a small aperture (< 4 m) seismic array in a “lander-like” configuration
 • Develop protocols and requirements for spacecraft onboard-generation of data products
 • Assess the effectiveness of passive seismicity for constraining crustal thickness on Europa
 • Deploy flight candidate Silicon Audio broadband seismometers

• We deployed our candidate seismometer on a purpose-built lander simulator on a glacier in Gulkana, Alaska and on a subglacial lake in northwest Greenland.

• In each experiment, we compared on-lander (as an analog to the Europa lander’s vault) to in-ice measurements.

• Both deployments demonstrated the ability of our instrument to detect seismic phases unique to ice-water interfaces in an analog environment, and also constrain the thickness of an ice column.
GULKANA GLACIER, ALASKA
GULKANA, ALASKA EXPERIMENT

Date & Time: Sat Sep 9 15:00:20 AKST 2017
Position: 60.3.2009A N 146.41258 E
Altitude: 14494m
Datum: WGS-84
Azimuth/Bearing: 049° N48° 07'11mi True/Zoom 1X

Silicon Audio seismometers in sand-filled buckets on Lander simulator

Rothek 130s & batteries in weather boxes

Trillium 120PH buried and vaulted beneath table

Silicon Audio seismometer Sercel L-28-3D (HF) Trillium Compact buried and vaulted in shallow ice pits

Ground-based

Deck-mounted
PASSIVE SEISMICITY COMPARISON: GULKANA

- Sept 19th 2017 MW 7.1
- Bandpass filter 1-50s, instrument response removed, vertical component
- Deck-mounted instrument exhibits more background noise and obscured arrivals
“CAMP EUROPA”
GREENLAND
GREENLAND EXPERIMENT
LANDER RESPONSE

finite element modeling of our lander simulator showing the response to a simulated seismic signal

Response is sensitive to mounting location
SUMMARY/DISCUSSION

- Single-station or small arrays can be powerful tools
 - Can detect both large global events, and small local events
 - Located events can be used to invert for structure
 - Special techniques for recovering distance and azimuth of events now being employed on Mars with InSight

- Deck mounted deployment can be as powerful as grounded (with precautions)
 - Necessary to quantify the response and self-noise of the lander & sensor as a combined system
LUNAR CASE

• SIIOS team is also developing the Silicon Audio seismometer for use on the Moon

• Includes subsurface gas-jet deployment system for sub-surface burial

• Provides thermal isolation and mitigates the effects of scattering in the lunar regolith

• Candidate instrument for future lunar geophysical network