Cloud Governance at Scale
Summer ESIP 2019

Ben Williams
EED-2 Cloud Operations Lead
Benjamin.j.Williams@nasa.gov

This work was supported by NASA/GSFC under Raytheon Co. contract number NNG15HZ39C.
This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.
Elements of a Well Architected Cloud Governance Solution

- **End User Access**
 Methods of access to the cloud environment

- **Common Services**
 Infrastructure and Shared services accessible by cloud tenants

- **Networking**
 Enterprise networking strategy for intra-AWS Account communication and ingress/egress control

- **Security Services**
 Central log aggregation and security event analysis

- **Certification and Accreditation Strategy**
 Methodology to reach ATO fast with a repeatable process

- **Governance of Cloud Accounts**
 Tools for account management, budget enforcement, compliance automation + Access to CSP CLI, API, Console
Agenda

GOALS

CLOUD-SPECIFIC CHALLENGES

METHODS

LOOKING FORWARD
Goals

This is Sully. Sully wants toys. Sully hates water.

Image Source: Ben Williams
Goals

Earthdata Cloud (EDC):
- Cloud-based development environment
- Supports multiple missions and organizations
- Hosts a diverse set of applications and application architectures
 - Traditional Servers/VMs
 - Containers / Microservices
 - Serverless
 - Object Storage & Distribution
 - Network Management Apps
- Allows various application lifecycles
 - Quarterly releases
 - Daily releases
 - Continuous Delivery
- Differing developer expertise
 - Developer interns
 - Cloud experts
 - Managers and Executives
Goals

EDC must assure a baseline of security across the entire ecosystem
- Authority to Operate (ATO)
- National Institute of Standards and Technology (NIST)
- Federal Risk and Authorization Management Program (FedRAMP)
- Agency-specific mandates
- Industry best-practices

Cloud-specific standards continue to mature as cloud adoption increases
- Many COTS and FOSS tools available for traditional Virtual Machine (VM) and Firewall model
- Few standard tools for Infrastructure-as-a-Service (IaaS) – especially:
 - Boundary protection in the cloud
 - Cloud-Native / Serverless
Goals

EDC must assure expenditures do not exceed budget caps
- Antideficiency Act (ADA) “hard” limit
- Minimize “un-needed” expense “soft” limit

Traditional IT procurement supports budget assurance through up-front capital purchases
- Cost estimates
- Justification
- Approvals
- Procurement
- Inventory
- Disposition

Pay-as-you-go model in cloud requires new processes new controls
- Individual developers impact cost daily
- “Efficient” use reduces cost
- “Inefficient” use increases cost
Goals

EDC aims to provide Cloud-Users with as much development autonomy as possible
• Direct access to cloud console and application-program-interfaces (APIs)
• Direct control over cloud-resource provisioning and decommissioning
• Direct control over role and permission delegation

Tenant autonomy must be balanced with security assurance and budget assurance

EDC establishes “guard-rails” for key configurations
• Limited permissions for networking changes
• Publishing to Internet requires man-in-the-loop approval and implementation
• Role delegation within acceptable "high watermark"
Cloud specific challenges

Cumulonimbus – a very challenging cloud
Image source: Wikimedia (link) (Creative Commons)
Cloud specific challenges

“Firewalls” for Cost Overruns

Traditional firewalls prevent unwanted traffic from entering or exiting systems

Similar “firewall” type solutions are needed to ensure cloud costs can not overrun approved budgets

- **Freeze-Spend**: Removes permissions to launch any NEW resources
 - reduces daily cost rate

- **Circuit-Breaker**: Non-destructively suspends operations of EXISTING resources
 - reduces daily cost totals

- **Egress Controls**: Monitor and control data egress to avoid cost overruns

Intrusion Detection and Prevention Systems (IDPS) monitor for suspicious behavior and optionally take action to prevent activity

- **AWS GuardDuty**: - monitors for unusual AWS usage (ex: Bit-Coin Mining)

- **AWS Soft-Limits**: - limits the number of resources that can be created without man-in-the-loop approval
Cloud specific challenges

On-Premises data centers typically have a small finite number of physical ingress/egress points.

Boundary protection tools can focus on these points and see all traffic.

In Cloud, the boundary definition is much less clear:

- **Virtual Private Cloud (VPC)**
 - *AWS EC2*: Elastic Compute Cloud
 - *AWS RDS*: Relational Database Service

 Protections similar to on-prem:
 - Firewalls / DNS / PCAP / etc.

- **Non-VPC**
 - *AWS S3*: Simple Storage Service
 - *AWS DynamoDB*: NO-SQL Datastore
 - *AWS Lambda*: Serverless Functions
 - etc. etc.

Requires cloud ready alternatives:
- *AWS CloudTrail*: API Usage Logs
- *AWS CloudWatch*: Events and Metrics
- *AWS S3 Access Logs*: S3 requests
- *AWS S3 Bucket Policies*: S3 permissions
Cloud specific challenges

Basic on-prem security starts with the server operating system and attempts to prevent or identify compromise:
- Firewall configurations
- Root permissions
- Malicious code
- Etc.

Serverless cloud resources have no OS to scan. Alternative methods are used to assess vulnerabilities:
- Static code analysis
- Invocations
 - Triggers / Permissions
 - Successes / Failures
 - Durations / Volume
- Output logs
- Optionally run within a VPC
 - to inherit network monitoring
Methods
Methods

Various tools and methods are employed to monitor activity within the cloud:

- Authentication and Authorization
- Network traffic and flows
- API activity
- Server logs
- Resource utilization
- Inventory
- Compliance
- Health monitoring
- Metrics and Trends
- Errors
- “Unusual” behavior
- Etc. etc. …
Methods

Operating at scale requires extensive automation
• Reduces human error
• Normalizes environments
• Accelerates updates
• Staff multiplier

Infrastructure-as-Code: Terraform
• Common modules and templates for:
 - application networking
 - permission management
 - security baselines
 - and more
• Continuous-Integration / Continuous-Delivery (CICD)
 - accelerate feedback to developers
 - complete and attributable history of updates to accounts

Man-in-the-loop processes reserved for true review and approval tasks
Methods

Empowering Cloud-Users to self-service their needs allows our integrated DevOps team to keep-up with a growing user base.

Cloud-User autonomy must be balanced with the need for security and budget assurances.

Example: Delegating role management
- AWS Permissions Boundaries allows EDC to define the maximum allowable permissions.
- Cloud-Users create and manage their own Identity and Access Management (IAM) Roles within the limits of the Permissions Boundary.
Methods

Fostering and facilitating a supportive development community allows answers to tough questions to come from anyone.

Multiple communication tools in-place to allow synchronous and asynchronous knowledge sharing:

- EDC moderated knowledgebase and community forum
- User-guides and Getting-Started documentation
- Online document collaboration
- Secure document sharing
- End-user Wiki
- Operations Wiki
- How-To Videos
- “Office-Hours” with EDC engineer panel
- Announcement distribution lists
- Online chat for full community
- Ticket management system
Methods

Special-cases come up frequently where exceptions to normal rules must be granted

- Priority customers / demos
- Special test events
- Rapid-Prototyping efforts

Permitting exceptions poses challenges to configuration management across the ecosystem

- Request and approval tracking
- Implementation estimates
- Potential for re-use
- Modular and versioned infrastructure

Customization
Looking forward

- Automate everything
- Further empower end-users to self-service
- Develop intelligent oversight tools and analytics
- Continue to build an open and supportive community

More missions More accounts
More developers More applications
This work was supported by NASA/GSFC under Raytheon Co. contract number NNG15HZ39C.

Raytheon

in partnership with