TESS Data Release Notes: Sector 12, DR17

Michael M. Fausnaugh, Christopher J. Burke
Kavli Institute for Astrophysics and Space Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

Douglas A. Caldwell
SETI Institute, Mountain View, California

Jon M. Jenkins
Ames Research Center, Moffett Field, California

Jeffrey C. Smith, Joseph D. Twicken
SETI Institute, Mountain View, California

Roland Vanderspek
Kavli Institute for Astrophysics and Space Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

John P. Doty
Noqsi Aerospace Ltd, Billerica, Massachusetts

Eric B. Ting
Ames Research Center, Moffett Field, California

Joel S. Villasenor
Kavli Institute for Astrophysics and Space Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

July 16, 2019
Acknowledgements

These Data Release Notes provide information on the processing and export of data from the Transiting Exoplanet Survey Satellite (TESS). The data products included in this data release are full frame images (FFIs), target pixel files, light curve files, collateral pixel files, cotrending basis vectors (CBVs), and Data Validation (DV) reports, time series, and associated xml files.

These data products were generated by the TESS Science Processing Operations Center (SPOC, Jenkins et al., 2016) at NASA Ames Research Center from data collected by the TESS instrument, which is managed by the TESS Payload Operations Center (POC) at Massachusetts Institute of Technology (MIT). The format and content of these data products are documented in the Science Data Products Description Document (SDPDD)\(^1\). The SPOC science algorithms are based heavily on those of the Kepler Mission science pipeline, and are described in the Kepler Data Processing Handbook (Jenkins, 2017).\(^2\) The Data Validation algorithms are documented in Twicken et al. (2018) and Li et al. (2019). The TESS Instrument Handbook (Vanderspek et al., 2018) contains more information about the TESS instrument design, detector layout, data properties, and mission operations.

The TESS Mission is funded by NASA’s Science Mission Directorate.

This report is available in electronic form at

https://archive.stsci.edu/tess/

1 Observations

TESS Sector 12 observations include physical orbits 31 and 32 of the spacecraft around the Earth. Data collection was paused for 1.04 days during perigee passage while downloading data. In total, there are 26.90 days of science data collected in Sector 12.

<table>
<thead>
<tr>
<th>UTC TJD a</th>
<th>Cadence #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit 31 start 2019-05-21 10:45:31</td>
<td>1624.94979</td>
</tr>
<tr>
<td>Orbit 31 end 2019-06-04 11:51:31</td>
<td>1638.99562</td>
</tr>
<tr>
<td>Orbit 32 start 2019-06-05 12:45:31</td>
<td>1640.03312</td>
</tr>
<tr>
<td>Orbit 32 end 2019-06-18 09:21:30</td>
<td>1652.89144</td>
</tr>
</tbody>
</table>

a TJD = TESS JD = JD - 2,457,000.0

The spacecraft was pointing at RA (J2000): 229.5885°; Dec (J2000): −75.1256°; Roll: 153.9773°. Two-minute cadence data were collected for 20,000 targets, and full frame images were collected every 30 minutes. See the TESS project Sector 12 observation page for the coordinates of the spacecraft pointing and center field-of-view of each camera, as well as the detailed target list. Fields-of-view for each camera and the Guest Investigator two-minute target list can be found at the TESS Guest Investigator Office observations status page.

1.1 Notes on Individual Targets

Ten very bright stars (Tmag ≲ 1.8) with large pixel stamps were not processed in the photometric pipeline. Target pixel files with raw data are provided, but no light curves were produced. The affected TIC IDs are 364216056, 471011144, 191437754, 396139114, 171207618, 399646462, 38877693, 471011145, 325635393, 238196512.

Two target stars (300015238 and 300015239) are blended with each other—the contaminating flux for these objects is very large, and the resulting photometry for such targets is expected to be unreliable.

Nine bright (Tmag ≲ 3.4), saturated, bleeding targets (17158018, 171611328, 175627991, 205175750, 325709821, 338104678, 338105219, 384196595, 412724758) had selected pixel stamps that did not fully capture the bleed trails.

1.2 Spacecraft Pointing and Momentum dumps

The reaction wheel speeds were reset with momentum dumps every 3.125 days. Figure 1 summarizes the pointing performance over the course of the sector based on Fine Pointing telemetry.

At the start of orbit 31, the Earth was close enough to the boresight of Camera 1 that the level of scattered light would have been too high for meaningful guide star centroids to be measured in Camera 1. Therefore, guiding with Camera 1 was disabled and Camera 4

3https://tess.mit.edu/observations/sector-12
4https://heasarc.gsfc.nasa.gov/docs/tess/status.html
alone was used for guiding in all of orbit 31. (From past sectors, we have found that the instantaneous attitude shift caused by re-enabling guiding in Camera 1 mid-orbit often leads to spurious jumps in the light curves that trigger many false positive TCEs.) The pointing stability using Camera 4 for guiding is comparable to using both Cameras 1 and 4, and does not substantially impact the quality of the light curves. However, this configuration causes the apparent pointing of Cameras 1, 2 and 3 to drift by larger amounts than in other sectors due to differential velocity aberration. The amplitude of the drift depends on each camera, and has a maximum value of 3 arcseconds (0.14 pixels) in Camera 1 from the beginning to end of orbit 31.

In orbit 32, both Camera 1 and Camera 4 were used for guiding for the entire duration of the orbit.

Figure 1: Guiding corrections based on spacecraft fine pointing telemetry. The delta-quaternions from each camera have been converted to spacecraft frame, binned to 1 minute and 1 hour, and averaged across cameras. Long-term trends (such as those caused by differential velocity aberration) have also been removed. The $\Delta X/\Delta Y$ directions represent offsets along the detectors’ rows/columns, while the ΔZ direction represents spacecraft roll.

1.3 Scattered Light

Figure 2 shows the median value of the background estimate for all targets on a given CCD as a function of time. Figure 3 shows the angle between each camera’s boresight and the Earth or Moon—this figure can be used to identify periods affected by scattered light and the relative contributions of the Earth and Moon to the image backgrounds. In Sector 12,
the main stray light features are caused by the Earth and Moon at the start of each orbit.

Figure 2: Median background flux across all targets on a given CCD in each camera. The changes are caused by variations in the orientation and distance of the Earth and Moon.

2 Data Anomaly Flags

See the SDPDD (§9) for a list of data quality flags and the associated binary values used for TESS data, and the TESS Instrument Handbook for a more detailed description of each flag.

The following flags were not used in Sector 12: bits 1, 2, 7, 9, and 11 (Attitude Tweak, Safe Mode, Cosmic Ray in Aperture, Discontinuity, Cosmic Ray in Collateral Pixel).

Cadences marked with bits 3, 4, 6, and 12 (Coarse Point, Earth Point, Reaction Wheel Desaturation Event, and Straylight) were marked based on spacecraft telemetry.

Cadences marked with bit 5 and 10 (Argabrightening Events and Impulsive Outlier) were identified by the SPOC pipeline. Bit 5 marks a sudden change in the background measurements. In practice, bit 5 flags are caused by rapidly changing glints and unstable pointing at times near momentum dumps. Bit 10 marks an outlier identified by PDC and omitted from the cotrending procedure.

Cadences marked with bit 8 (Manual Exclude) are ignored by PDC, TPS, and DV for cotrending and transit searches. In Sector 12, these cadences were identified using spacecraft telemetry from the fine pointing system. All cadences with pointing excursions >21
Figure 3: Angle between the four camera boresights and the Earth/Moon as a function of time. When the Earth/Moon moves within 37° of a camera’s boresight, scattered light patterns and complicated features such as glints may appear. At larger angles, low level patchy features may appear. This figure can be used to identify periods affected by scattered light and the relative contributions of the Earth and Moon to the background. However, the background intensity and locations of scattered light features depend on additional factors, such as the Earth/Moon azimuth and distance from the spacecraft.

arcseconds (~1 pixel) were flagged for manual exclude. See Figure 4 for an assessment of the performance of the cotrending based on the final set of manual excludes.

In addition, strong scattered light signals affected the systematic error removal in PDC and the planet search in TPS. Cadences during this time were excluded from the pipeline analysis. The time periods for these exclusions are variable per CCD, and the corresponding cadence ranges are given in Table 2. Raw and flux-calibrated (without background correction) pixels for these cadences are provided in the target pixel files, but no photometry or centroid positions were calculated. The pipeline exports do not support data quality flags on a per CCD basis, and so the QUALITY column is not marked beyond the flags described above. In sector 12, these cadence ranges were only excluded for Camera 1.

FFIs were only marked with bits 6 and 12 (Reaction Wheel Desaturation Events and Straylight). Only one FFI is affected by each momentum dump.
Table 2: Cadence ranges for data excludes due to scattered light

<table>
<thead>
<tr>
<th>Cam</th>
<th>CCD</th>
<th>Orbit 31</th>
<th>Orbit 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>286196–288125</td>
<td>297056–298530</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>286196–288125</td>
<td>297056–298542</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>286196–288125</td>
<td>297056–298375</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>286196–288125</td>
<td>297056–298543</td>
</tr>
</tbody>
</table>

3 Anomalous Effects

3.1 Smear Correction Issues

The following columns were impacted by bright stars in the science frame and/or the upper buffer rows, which bleed into the upper serial register resulting in an overestimated smear correction.

- Camera 2, CCD 1, Column 360, Star System α Centauri
- Camera 2, CCD 3, Column 1988, Star Δ Trianguli Australis

3.2 Fireflies and Fireworks

Table 3 lists all firefly and fireworks events for Sector 12 (only one event was found in Sector 12). These phenomena are small, spatially extended, comet-like features in the images—created by sunlit particles in the camera FOV—that may appear one or two at a time (fireflies) or in large groups (fireworks). See the TESS Instrument Handbook for a more complete description.

<table>
<thead>
<tr>
<th>FFI Start</th>
<th>FFI End</th>
<th>Cameras</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019142135932</td>
<td>2019142142932</td>
<td>3</td>
<td>Firefly</td>
</tr>
</tbody>
</table>

4 Pipeline Performance and Results

4.1 Light Curves and Photometric Precision

Figure 5 gives the PDC goodness metrics for residual correlation and introduced noise on a scale between 0 (bad) and 1 (good). The performance of PDC is very good and generally uniform over most of the field of view. Figure 6 shows the achieved Combined Differential Photometric Precision (CDPP) at 1-hour timescales for all targets.
Figure 4: Median absolute deviation (MAD) for the 2-minute cadence data from Sector 12, showing the performance of the cotrending after identifying Manual Exclude data quality flags. The MAD is calculated in each cadence across stars with flux variations less than 1% for both the PA (red) and PDC (blue) light curves, where each light curve is normalized by its median flux value. The scatter in the PA light curves is much higher than that for the PDC light curves, and the outliers in the PA light curves are largely absent from the PDC light curves due to the use of the anomaly flags. Note that the first and last cadences in each orbit are treated as gaps by PDC.

4.2 Transit Search and Data Validation

In Sector 12, the light curves of 19990 targets were subjected to the transit search in TPS. Of these, Threshold Crossing Events (TCEs) at the 7.1σ level were generated for 1035 targets. Cadences at the start of each orbit were excluded from the transiting planet search due to the effects of rapidly changing scattered light and glints (see Figure 2). Planet search exclude flags were applied to cadences 286196–288125 (2.68 days) in orbit 31 and cadences 297056–298542 (2.06 days) in orbit 32.

The top panel of Figure 7 shows the distribution of orbital periods for the TPS TCEs found in Sector 12. Figure 8 shows the number of TCEs at a given cadence that exhibit a transit signal. The spikes in Figure 8 are correlated with periods of increased pointing jitter (see Figure 1).

The vertical histogram in the right panel of Figure 7 shows the distribution of transit depths derived from limb-darkened transiting planet model fits for TCEs. The model transit depths range down to the order of 100 ppm, but the bulk of the transit depths are considerably larger.

A search for additional TCEs in potential multiple planet systems was conducted in DV through calls to TPS. A total of 1458 TCEs were ultimately identified in the SPOC pipeline on 1035 unique target stars. Table 4 provides a breakdown of the number of TCEs by target.
Figure 5: PDC residual correlation goodness metric (top panel) and PDC introduced noise goodness metric (bottom panel). The metric values are shown on a focal plane map indicating the camera and CCD location of each target. The correlation goodness metric is calibrated such that a value greater than 0.8 means there is less than 10\% mean absolute correlation between the target under study and all other targets on the CCD. The introduced noise metric is calibrated such that a value greater than 0.8 means the power in broad-band introduced noise is below the level of uncertainties in the flux values.

Note that targets with large numbers of TCEs are likely to include false positives.
Figure 6: 1-hour CDPP. The red points are the RMS CDPP measurements for the 19990 light curves from Sector 12 plotted as a function of TESS magnitude. The blue x’s are the uncertainties, scaled to 1-hour timescale. The purple curve is a moving 10th percentile of the RMS CDPP measurements, and the gold curve is a moving median of the 1-hr uncertainties.

Table 4: Sector 12 TCE Numbers

<table>
<thead>
<tr>
<th>Number of TCEs</th>
<th>Number of Targets</th>
<th>Total TCEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>683</td>
<td>683</td>
</tr>
<tr>
<td>2</td>
<td>296</td>
<td>592</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>135</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>–</td>
<td>1035</td>
<td>1458</td>
</tr>
</tbody>
</table>
Figure 7: Lower Left Panel: Transit depth as a function of orbital period for the 1458 TCEs identified for the Sector 12 search. For enhanced visibility of long period detections, TCEs with orbital period <0.5 days are not shown. Reported depth comes from the DV limb darkened transit fit depth when available, and the DV trapezoid model fit depth when not available. Top Panel: Orbital period distribution of the TCEs shown in the lower left panel. Right Panel: Transit depth distribution for the TCEs shown in the lower left panel.
Figure 8: Number of TCEs at a given cadence exhibiting a transit signal. Isolated peaks are caused by a single event and result in spurious TCEs. The peaks typically align with pointing instabilities and strong background variations.
References

Acronyms and Abbreviation List

BTJD Barycentric-corrected TESS Julian Date
CAL Calibration Pipeline Module
CBV Cotrending Basis Vector
CCD Charge Coupled Device
CDPP Combined Differential Photometric Precision
COA Compute Optimal Aperture Pipeline Module
CSCI Computer Software Configuration Item
CTE Charge Transfer Efficiency
Dec Declination
DR Data Release
DV Data Validation Pipeline Module
DVA Differential Velocity Aberration
FFI Full Frame Image
FIN FFI Index Number
FITS Flexible Image Transport System
FOV Field of View
FPG Focal Plane Geometry model
KDPH Kepler Data Processing Handbook
KIH Kepler Instrument Handbook
KOI Kepler Object of Interest
MAD Median Absolute Deviation
MAP Maximum A Posteriori
MAST Mikulski Archive for Space Telescopes
MES Multiple Event Statistic
NAS NASA Advanced Supercomputing Division
PA Photometric Analysis Pipeline Module
PDC Pre-Search Data Conditioning Pipeline Module
PDC-MAP Pre-Search Data Conditioning Maximum A Posteriori algorithm
PDC-msMAP Pre-Search Data Conditioning Multiscale Maximum A Posteriori algorithm
PDF Portable Document Format
POC Payload Operations Center
POU Propagation of Uncertainties
ppm Parts-per-million
PRF Pixel Response Function
RA Right Ascension
RMS Root Mean Square
SAP Simple Aperture Photometry
SDPDD Science Data Product Description Document
SNR Signal-to-Noise Ratio
SPOC Science Processing Operations Center
SVD Singular Value Decomposition
TCE Threshold Crossing Event
TESS Transiting Exoplanet Survey Satellite
TIC TESS Input Catalog
TIH TESS Instrument Handbook
TJD TESS Julian Date
TOI TESS Object of Interest
TPS Transiting Planet Search Pipeline Module
UTC Coordinated Universal Time
XML Extensible Markup Language