Current Status of Shock Layer Radiation Studies for Planetary Probes

Brett A. Cruden, Aaron M. Brandis
Analytical Mechanical Associates, Inc.
NASA Ames Research Center

International Planetary Probe Workshop, Oxford, UK, 12 Jul 2019
Basic Radiation Terminology

• **Radiative Heat Flux** is equal to the:
 - **Irradiance**, which is the integral of the:
 - **Radiance**, which is the integral of the:
 • **Spectral Radiance**, which is the integral of the:
 • **Volumetric Spectral Radiance** kinda
How to validate the radiation model

• Stagnation streamline is a 1-D flow:

\[h = h_0 + \frac{v_s^2}{2} \]
\[T = T_s \]
\[\rho = \rho_s \]

• Shock tube is a 1D flow:

\[v = v_s \]
\[\rho = \rho_\infty \]
\[T = T_\infty \]
\[h = h_0 \]
Planetary Atmospheres tested in EAST

This Talk

CO₂/N₂/(Ar)
Test 47
Test 50
Test 52
Test 57
Test 59

CO₂/N₂
Test 49

N₂/O₂/(Ar)
Test 47
Test 51
Test 53
Test 54
Test 55
Test 58

H₂/He/(CH₄)
Test 56

Titan
N₂/CH₄
Test 61

Sun
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto
Kuiper Belt Objects
Comets
Makemake
Main feature of Titan Radiation is CN
- Comes from $\text{CH}_4 + \text{N}_2$
What is interesting about Titan?

- Until recently, the models were thought to be very conservative
- Newer tests showed models to be close
- Discrepancy was shown to be due partly to contamination (air leaks) in old test data, and some factors still unknown
Main features of Venus Radiation is Atomic Carbon
- Atomic lines
- C⁺ + e⁻ recombination continuum
- At lower velocity, molecular CO and CN radiation contribute
What is interesting about Venus?

- VUV continuum radiation was underpredicted (v13)
- Correcting NEQAIR database (v14) led to overprediction
- An error in the database interpretation routine (corrected v15) eliminated the overprediction
 - Model is not conservative
- Additional database data (Quantum Mechanics Calculation) required
• Most of the data is spectrometer noise floor
 - Radiance nearly insignificant
 - Prediction is small in magnitude, but significantly over measurement
Saturn

EAST Shot 56/22: 11% He (molar) in H$_2$, 27.66 km/s, 6.0 \times 10$^{-5}$ kg/m3 (Prabhu)

- Main feature of Saturn Radiation is atomic H
 - Molecular H in non-equilibrium
What is interesting about Saturn Radiation?

- Ionization in Saturn Entry is very slow
 - Does not come to equilibrium
 - Temperature is elevated
- Boltzmann significantly overpredicts non-equilibrium (conservative)
- Trace amount (0.5%) of CH₄ may change ionization rate?
Summary/Recommendations

- EAST Facility provides a way to test radiative heating models
 - Has been used for building margin policy, revising best practices

- Discussed general features and questions about radiation for Titan, Venus and Saturn probes

- Approximate Heating Magnitude (1m sphere)/Confidence:

<table>
<thead>
<tr>
<th></th>
<th>q_{Rad} (W/cm2)</th>
<th>Fraction of Total Heating</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titan</td>
<td>10</td>
<td>3%</td>
<td>± 30%</td>
</tr>
<tr>
<td>Venus</td>
<td>5800</td>
<td>40%</td>
<td>± 30%</td>
</tr>
<tr>
<td>Uranus</td>
<td>5</td>
<td>0.5%</td>
<td>Conservative (Boltzmann)</td>
</tr>
<tr>
<td>Saturn</td>
<td>15</td>
<td>0.5%</td>
<td>Conservative (Boltzmann)</td>
</tr>
</tbody>
</table>

Note: Significant dependence on probe size and velocity

- This talk has not addressed backshell radiation!
 - Backshell radiation is always (?) less than forebody radiation
 - But it often exceeds convection (e.g. Titan, Mars)
 - May have different mechanisms than forebody heating
Backup
Radiative Heat Flux is equal to the:
- Irradiance is the integral (over solid angle) of the:
 - Radiance is the integral (over wavelength) of the:
 - Spectral Radiance is the integral (over distance) of the:
 - Radiative Transport Equation, which to first order is the
 - Volumetric Spectral Radiance
How we model radiation

• Flowfield solution gets a map of species number densities, temperatures at every grid point
• Extract a “line of sight” (LOS) through the flow field to the body
• Pass the LOS to NEQAIR
• NEQAIR solves
 - Non-Boltzmann Equation (density of excited states)
 - Atomic and Molecular emission and absorption coefficients (Volumetric Radiance)
 - Radiative transport equation (Radiance)
 - Tangent Slab or Full Angular Integration (Irradiance)
 - Integrate over wavelength