Gradient-Based Propeller Optimization with Acoustic Constraints

AIAA 2019–1219

Daniel Ingraham1 Justin Gray1 Leonard V. Lopes2

1NASA Glenn Research Center 2NASA Langley Research Center

AIAA Aviation Forum
June 17th–21st, 2019

This work was supported by NASA’s Transformational Tools and Technologies (TTT) Project.
Urban Air Mobility Represents a New Challenge for Aircraft Acoustics
What We’d Like To Do

Develop toolchain for large-scale optimization of a tilt wing turboelectric UAM concept from Johnson et al.[1], with coupled structural, aerodynamics, acoustics, propulsion, thermal, and trajectory disciplines.
What We’ve Done Here: Propeller Optimization With Fixed Relative Observer (Essentially Wind Tunnel Configuration)
Mid-Fidelity Models, Gradient-Based Optimization Enable Large-Scale Analysis

- **Mid-fidelity aerodynamic models:**
 - Blade element momentum theory (BEMT): Gur and Rosen[2, 3], Wisniewski et al.[4].
 - Vortex lattice: Miller and Sullivan[5].

- **High-fidelity aerodynamic models:**
 - Computational Fluid Dynamics: Pagano et al.[6, 7].

- Most examples use some form of the Ffowcs-Williams Hawking (FWH) approach[8] for the acoustic model.

Methods for this work

BEMT and FWH, all with analytic derivatives. Focusing on developing tool chain.
BEMT Limitations

- No interaction between blade elements, so spanwise flow not captured (so no blade sweep).
- Here, used steady, level flight, so predicted loads will be steady (not changing with propeller rotation).
- OK for steady, forward flight. Probably not adequate for VTOL.
BEMT Implementation: OpenBEMT

- Initially developed by Hwang and Ning[9] to study the X-57 Maxwell concept.
- Uses OpenMDAO framework[10] to propagate outputs and their derivatives through each stage of the calculation for gradient-based optimization.
Uses distributed flow properties on surface (e.g., propeller blade surface) to calculate source term strengths, and then the acoustic pressure time history at a specified location (“acoustic observer”).

Needed inputs directly correspond to BEMT outputs, and about the same computational expense as BEMT.

Limitations & Assumptions
- Steady loading configuration captures only steady acoustic sources.
- Elongated surface in lifting line direction.
- Assumes acoustic observer distance much larger than blade thickness.
FWH Implementation: ANOPP2

- Compact F1A calculation is implemented in NASA Langley’s second generation Aircraft Noise Prediction Program[14] (ANOPP2).
- ANOPP2 is a comprehensive noise prediction framework, much more than just F1A.
- The Compact F1A implementation has been differentiated for use with gradient-based optimization, and is used in this work.
XDSM Diagram: Optimization Overview

- D_{hub}: hub diameter
- \tilde{v}_∞: free-stream velocity
- c_i: chord
- Y_i: blade element location
- T: thrust
- D_{prop}: propeller diameter
- \tilde{x}: observer location
- θ_i: twist
- \tilde{f}_i: blade element loading
- η: efficiency

Symbols:
- c_i^\ast, θ_i^\ast, D_{prop}^\ast, ω^\ast
- c_i, θ_i, D_{prop}, ω
- η^\ast, T^\ast
- η, T
- \tilde{Y}_i, \tilde{f}_i
- \tilde{X}, \tilde{v}_∞
- OASPL, OASPL^\ast
XDSM Diagram: ANOPP2 Detail

Blade Geometry

\(\omega, Y_i, c_i \)

\(\omega, Y_i, \vec{f}_i \)

\(\omega, \vec{x}, \vec{v}_\infty \)

\(\vec{y}_i, \Lambda_i \)

\(\vec{F}_i \)

Blade Loads

Compact F1A

\(p_m, p_d \)

Narrowband Spectrum

\(\langle p^2 \rangle \)

OASPL

OASPL
Test Case: X-57 Cruise Propeller Properties

Test case parameters were taken from the NASA’s X-57 Maxwell[15] cruise propellers:
Test Case: X-57 Cruise Propeller Properties

Test case parameters were taken from the NASA’s X-57 Maxwell[15] cruise propellers:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>10 m</td>
</tr>
<tr>
<td>Cruise speed</td>
<td>77.2 m/s</td>
</tr>
<tr>
<td>Diameter</td>
<td>1.5 m</td>
</tr>
<tr>
<td>Hub diameter</td>
<td>0.3 m</td>
</tr>
<tr>
<td>Airfoil</td>
<td>MH117</td>
</tr>
<tr>
<td>Blade count</td>
<td>3</td>
</tr>
</tbody>
</table>
Two Optimization Cases

Multi-objective optimization: **maximize propeller efficiency** for **constant thrust**, with **OASPL constraint** systematically reduced to form a Pareto frontier.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximize efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with respect to chord</td>
<td>1 cm</td>
<td>20 cm</td>
</tr>
<tr>
<td>with respect to twist</td>
<td>20 deg</td>
<td>90 deg</td>
</tr>
<tr>
<td>with respect to diameter(^1)</td>
<td>75 cm</td>
<td>150 cm</td>
</tr>
<tr>
<td>with respect to RPM</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>subject to total thrust = 700. N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sideline OASPL</td>
<td>x (\Delta dB)</td>
<td>x (\Delta dB)</td>
</tr>
</tbody>
</table>

\(^1\) Optimizer chose upper bound for each run.
Optimizations are Pretty Quick

<table>
<thead>
<tr>
<th>Itns</th>
<th>Major Minors</th>
<th>Step</th>
<th>nCon</th>
<th>Feasible</th>
<th>Optimal</th>
<th>MeritFunction</th>
<th>L+U</th>
<th>BSamp</th>
<th>nS</th>
<th>cond</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>3.3E-02</td>
<td>5.5E-03</td>
<td>-9.3427573E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.9E+00</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1.7E-01</td>
<td>3</td>
<td>2.8E-02</td>
<td>4.8E-03</td>
<td>-9.3413416E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.1E+00</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1.7E-01</td>
<td>5</td>
<td>2.4E-02</td>
<td>1.8E-01</td>
<td>-9.3405397E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.1E+00</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>4.3E-02</td>
<td>7</td>
<td>2.4E-02</td>
<td>4.4E-02</td>
<td>-9.3401033E-01</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>9.2E+00</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>2.5E-01</td>
<td>9</td>
<td>2.0E-02</td>
<td>1.6E-02</td>
<td>-9.3403593E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.3E+00</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>7.3E-02</td>
<td>11</td>
<td>1.9E-02</td>
<td>1.1E-01</td>
<td>-9.3403816E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.4E+00</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>2.0E+00</td>
<td>12</td>
<td>2.0E-02</td>
<td>4.6E-02</td>
<td>-9.3394566E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.4E+00</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>2.0E+00</td>
<td>13</td>
<td>1.1E-03</td>
<td>3.9E-03</td>
<td>-9.3397863E-01</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>9.5E+00</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>2.0E+00</td>
<td>14</td>
<td>6.6E-05</td>
<td>1.4E-02</td>
<td>-9.3397529E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.5E+00</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>2.0E+00</td>
<td>15</td>
<td>7.0E-05</td>
<td>3.7E-02</td>
<td>-9.3398045E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.6E+00</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>2.0E+00</td>
<td>16</td>
<td>2.6E-05</td>
<td>2.8E-02</td>
<td>-9.3389412E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.6E+00</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>2.0E+00</td>
<td>17</td>
<td>1.5E-04</td>
<td>2.0E-02</td>
<td>-9.3398490E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.7E+00</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
<td>2.0E+00</td>
<td>18</td>
<td>1.0E-05</td>
<td>2.7E-02</td>
<td>-9.3398664E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.8E+00</td>
</tr>
<tr>
<td>26</td>
<td>13</td>
<td>2.0E+00</td>
<td>19</td>
<td>1.2E-05</td>
<td>1.8E-02</td>
<td>-9.3398804E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.8E+00</td>
</tr>
<tr>
<td>27</td>
<td>14</td>
<td>2.0E+00</td>
<td>20</td>
<td>3.5E-05</td>
<td>1.9E-03</td>
<td>-9.3398921E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>9.9E+00</td>
</tr>
<tr>
<td>28</td>
<td>15</td>
<td>2.0E+00</td>
<td>21</td>
<td>1.8E-05</td>
<td>5.8E-03</td>
<td>-9.3398934E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1.0E+00</td>
</tr>
<tr>
<td>29</td>
<td>16</td>
<td>2.0E+00</td>
<td>22</td>
<td>1.8E-05</td>
<td>1.9E-03</td>
<td>-9.3398934E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1.0E+00</td>
</tr>
<tr>
<td>30</td>
<td>17</td>
<td>2.0E+00</td>
<td>23</td>
<td>1.5E-05</td>
<td>3.7E-04</td>
<td>-9.3399052E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1.0E+00</td>
</tr>
<tr>
<td>31</td>
<td>18</td>
<td>2.0E+00</td>
<td>24</td>
<td>3.3E-07</td>
<td>1.4E-04</td>
<td>-9.3398994E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1.0E+00</td>
</tr>
<tr>
<td>32</td>
<td>19</td>
<td>2.0E+00</td>
<td>25</td>
<td>1.0E-05</td>
<td>3.3E-05</td>
<td>-9.3399037E-01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1.0E+00</td>
</tr>
</tbody>
</table>

SNOPTC EXIT 0 -- finished successfully
SNOPTC INFO 1 -- optimality conditions satisfied

Time for MPS input: 0.00 seconds
Time for solving problem: 9.54 seconds
Time for solution output: 0.00 seconds
Time for constraint functions: 9.54 seconds
Time for objective function: 0.00 seconds

1
Significant Difference Between the Two Pareto Frontiers

![Graph showing the comparison between two cases for propeller efficiency and delta OASPL, dB. The graph indicates a significant difference between the two cases, with Case 2 showing a higher efficiency compared to Case 1.]
Slower Propellers Are Quiet Propellers

![Graph showing propeller rotation rate vs. delta OASPL dB. The graph compares Case 1 and Case 2. Case 1 has a lower curve, indicating quieter performance.]
Case 1 Strategy: Shift Chord Inboard to Quiet Propeller

The graph shows the acoustic pressure level (OASPL) in dB at different radial locations (m) and chord lengths (cm) for a propeller. The legend indicates the unconstrained OASPL, with values ranging from 0.0 dB to -1.2 dB. The radial location is marked from 0.2 m to 0.7 m, and the chord length from 2 cm to 14 cm. The graph highlights the differences in OASPL between the hub and tip of the propeller.
Case 2 Strategy: Increase Chord to Maintain Thrust

![Graph showing the relationship between radial location and OASPL for different chord lengths, with unconstrained OASPL marked with a dashed line.](image-url)
Case 1 Strategy: Shift Twist Inboard to Quiet Propeller

![Graph showing OASPL and twist distribution](image-url)
Case 2 Strategy: Increase Twist to Maintain Thrust

Decreased RPM + increased pitch reminiscent of Berton & Nark[16]
Case 1: Move Axial Loading Inboard
Case 2: Maintain Axial Loading

[Graph showing axial load vs radial location with unconstrained OASPL indicated]
Case 1: Chord and Twist Impact Circumferential Loading

OASPL, ΔdB

Circumferential Load, N

radial location, m

hub
tip

unconstrained OASPL

NASCAR

25
Case 2: More Chord and Twist Increase Circum. Loading

![Graph showing circumferential load and OASPL (Objective Averaged Sound Pressure Level)]

- **Legend:**
 - **Unconstrained OASPL** (red dashed line)
 - **Other curves** (various lines)

- **Axes:**
 - **Circumferential Load, N** vs. **radial location, m**
 - **OASPL, ΔdB**

- **Key Points:**
 - **Hub** and **Tip** locations are marked.

- **Data Points:**
 - Various radial and circumferential loads are displayed, with corresponding OASPL values.

- **Color Coding:**
 - Different colors represent different radial locations.

- **Scale:**
 - OASPL values range from 0 dB to 45 dB.
 - Radial location ranges from 0.2 m to 0.7 m.

- **NASA Logo:**
 - Present on the page.
Propeller aerodynamics and acoustics codes were combined within an MDAO framework and exercised on two test cases.

Near-term next steps:
- fixed-observer case with trajectory optimization
 - Goal is to extend Berton & Nark’s[16] recent idea of reducing the noise of a hypothetical propeller-driven electrified GA aircraft through pitch control.
- Replace BEMT with higher-fidelity approach

Ultimate goal: include this tool chain in a larger UAM optimization (trajectory, power generation, vehicle weight).

References II

References III

References V

Compact F1A

- **Compact F1A**: integration surface is replaced with spanwise lifting line.

\[
p(t) = \frac{1}{4\pi} \int \left[\rho_\infty \Lambda C_{1A} + \frac{1}{c_\infty} \left(\dot{F}_i D_{1A,i} + F_i E_{1A,i} \right) \right]_{\text{ret}} dl
\]

\[C_{1A}, D_{1A}, E_{1A}\] are function of blade motion only, **large in regions where blade motion is high**.