Next Steps in Impact Risk Assessment

Donovan Mathias, Lorien Wheeler, Jessie Dotson, Michael Aftosmis, Clemens Rumpf

IAA Planetary Defense Conference
2 May 2019
College Park, MD
Probabilistic Asteroid Impact Risk Model

Asteroid Characterization → Input Parameter Distributions

Monte Carlo Sampling

Initial Conditions

Flight Integration
(meteor equations of motion, ablation)

Airburst Altitude
(peak energy deposition)

Fragment-Cloud Model
(breakup and energy deposition)

Blast and Radiation Propagation

Thermal Damage
(3rd degree burns)

Impact Coordinates

Overpressure Damage
(Peak overpressure ≥ 4 psi)

PHA Measurements
- H-magnitude
- Albedo
- Orbital trajectory
- Asteroid class
- Composition

Impact Parameters
- Diameter
- Density
- Strength
- Luminous efficiency
- Velocity
- Entry angle
- Azimuth angle
- Impact coordinates

Local Land Impact Casualties
(Gridded population within largest damage area)

Global Effects Casualties
(Percentage world population killed by climatic effects)

PDC 2019
Ensemble Lornado
(Total Casualties, All Hazards)

Ensemble, H 21.7 ± 0.4 (1-σ)
Day 1 Swath Lornado (Total Casualties, All Hazards)

Day 1 Swath, $H = 21.7 \pm 0.4$ (1-σ)

Total Casualties

- Full Variation
- Size
- Swath Location
- Swath Location & Entry
- Density
- Entry Angle
- Ablation
- Strength/α
- Velocity
- Lum. Eff.

Affected Population

10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9
Comparison of Rotated Swaths

Conditional Damage Risk

Conditional Damage Exceedance Probabilities

- Baseline
- +10 deg
- +45 deg
- +90 deg
- +180 deg
Hazard Breakdown

- Ensemble impacts most likely to cause no ground damage.
- Day 1 corridor impacts most likely to cause local blast damage.
- Tsunami risk ~10% of blast risk.
- Thermal and global effects unlikely drivers in current results.
Ensemble Risk Assessment

- Uncertainty in scenario specific details swamp modeling fidelity related to:
 - Blast overpressure
 - Asteroid Generated Tsunami
- Thermal radiation damage appears bounded by blast overpressure, but luminous efficiency values highly (100x) uncertain.
 - Need to quantify luminous efficiency uncertainty relative to thermal damage
- Global effects models for ensemble risk assessment are ad hoc and need basis in higher fidelity modeling.
- Regional impacts (local weather, flight pattern disruption, etc.) completely unrepresented in current ensemble risk modeling.

The NEO SDT report (2017) showed that long-term expected casualties driven by large impact scenarios.
Scenario Risk Assessment

- Initial uncertainty dictates that scenario assessments begin like ensemble assessments.
 - Balance of modeling accuracy versus state of knowledge (inputs) is key.
- Once scenario evolves, higher fidelity tools exist but best practices need to be established
 - Blast overpressure
 - Asteroid Generated tsunami
 - Thermal radiation
- Regional/global impact consequences have been assessed for specific cases, but broader analysis requirements need to be defined.
PDC2019 Hypothetical Example—Day 3 Example

- Earth impact probability reduced to 30.7% (from 100% in the non-deflected case)
- Remaining possible impacts shift from Denver to Africa
- Average affected population reduced by 52.0% from 302,000 to 145,000
- Risk of largest affected population numbers increases greatly
Summary

• Ensemble hazard assessment models adequately bound risk for sub-global impacts.
• Scenario specific assessment techniques exist but require establishment of current best practices
 • Blast overpressure
 • Asteroid generated tsunami
• Thermal radiation appears bounded by blast overpressure, but uncertainty of luminous efficiency needs quantification.
• Regional/global effects models need development
 • Link impact/ejecta and climate models for scenario assessment
 • Create new set of reduced order models for ensemble risk assessment
• Link between mitigation uncertainty and impact risk in initial stages and needs development to inform mission design.