Clustering Days with Similar Airport Weather Conditions

Shon Grabbe and Banavar Sridhar
NASA Ames Research Center

Avijit Mukherjee
University of California - Santa Cruz
Motivation

• Develop automation to support post-operations analyses and day-of-operations planning

• Limited what-if capabilities for developing and planning traffic flow management initiatives

• Human operators often rely on past experience and intuition when developing initiatives
Research Achievements

• Airport-level clustering identified hours with similar probabilities of Ground Delay Programs occurring

• Consistently low usage of Ground Delay Programs under good weather and nighttime operations

• Consistency of Ground Delay Program usage is airport dependent under bad weather operations
Outline

• Key Challenges

• Classification and Clustering Methodology

• Experimental Setup

• Results

• Potential Operational Use

• Conclusions
Key Challenges

- Noisy or incomplete data
- Data used for decision making may not be recorded (e.g., video camera feeds)
- Inconsistent decision making under similar weather and traffic conditions
Classification and Clustering Methodology

- Weather Observations
- Scheduled Arrival Rates and Airport Capacity
- Ground Delay Program (GDP), Ground Stop (GS) and Miles-in-Trail Records

Historical Inputs
Classification and Clustering Methodology

- Weather Observations
- Scheduled Arrival Rates and Airport Capacity
- Ground Delay Program (GDP), Ground Stop (GS) and Miles-in-Trail Records

Historical Inputs

GDP/GS Clustering Approach

- Probability of a GDP/GS Occurring
- Clusters with Similar GDP/GS Usage
Probability of a Ground Delay Program

- Logistic Model Tree used to calculate the probability of a Ground Delay Program occurring
- Supervised learning technique
 - Tree induction models the complex structures in the data
 - Leaves of the tree contain simple logistic regression models

\[\Pr(G = GDP \mid X = x) = \frac{\exp(F_{GDP}(x))}{\exp(F_{GDP}(x)) + \exp(F_{NoGDP}(x))} \]

\[F_{GDP}(x) = -2.89 + 0.01v + 2.89\rho \]
\[F_{NoGDP}(x) = -F_{GDP}(x) \]

\[F_{GDP}(x) = -1.57 + 0.02v + 0.79\rho \]
\[F_{NoGDP}(x) = -F_{GDP}(x) \]
Classification and Clustering Methodology

- Weather Observations
- Scheduled Arrival Rates and Airport Capacity
- Ground Delay Program (GDP), Ground Stop (GS) and Miles-in-Trail Records

GDP/GS Clustering Approach

- Probability of a GDP/GS occurring
- Clusters with similar GDP/GS Usage

Cluster-based Traffic Management Initiative (TMI) Usage

TMI Analysis
• Key Challenges

• Classification and Clustering Methodology
 • Experimental Setup

• Results

• Potential Operational Use

• Conclusions
2012 Hourly Prediction Attributes

Airports:
Newark Liberty International Airport (EWR) and Chicago O’Hare International Airport (ORD)

Weather Attributes (13 attributes):
• Wind direction, wind speed, probability of precipitation, ceiling height, visibility, probability of freezing precipitation, etc.
• Center Weather Impacted Traffic Index

Air Traffic Attributes:
Arrival demand and capacity
Outline

- Key Challenges
- Classification and Clustering Methodology
- Experimental Setup
- Results
 - Chicago O’Hare International Airport
 - Newark Liberty International Airport
- Potential Operational Use
- Conclusions
ORD: 5 Clusters

Historic Weather and Traffic

Morning and Nighttime Operations
58% of Observations

Fair Weather and High Daytime Operations
21% of Observations

Fair Weather and Low Daytime Operations
11% of Observations

Reduced Ceilings and Elevated Probability of Precipitation
7% of Observations

Bad Weather
3% of Observations
ORD: GDP Probabilities

- **Bad Weather**
 - 11-100% Probability of a GDP

- **Reduced Ceilings and Elevated Probability of Precipitation**
 - <20% Probability of a GDP

- **Fair Weather and Low Daytime Operations**
 - <10% Probability of a GDP

- **Fair Weather and High Daytime Operations**
 - <10% Probability of a GDP

- **Morning and Nighttime Operations**
 - <10% Probability of a GDP

Historic Weather and Traffic
ORD: Take-away

- For good/fair weather and low arrival demand, the probability of a GDP occurring is low.

 Fair Weather and High Daytime Operations
 <10% Probability of a GDP

- For bad weather and daytime operations, GDP usage was very inconsistent.

 Bad Weather
 11-100% Probability of a GDP
EWR: 13 Clusters

Historic Weather and Traffic

- Nighttime Operations: 26% of Observations
- (2) Morning Operations: 29% of Observations
- (7) Winter Weather and/or Reduced Ceilings: 39% of Observations
- Elevated En Route Weather and Precipitation: 2% of Observations
- Heavy Arrival Demand with Elevated Precipitation: 2% of Observations
- Bad Weather: 2% of Observations
EWR Clusters: GDP Probabilities

Historic Weather and Traffic

- Nighttime Operations
 - Probability: < 10%
- (2) Morning Operations
 - Probability: < 20%
- (7) Winter Weather and/or Reduced Ceilings
 - Probability: 21-90%
- Elevated En Route Weather and Precipitation
 - Probability: 51-70%
- Heavy Arrival Demand with Elevated Precipitation
 - Probability: 61-80%
- Bad Weather
 - Probability: >91%
EWR: Take-away

- For good weather and low arrival demand, the probability of a GDP occurring is low

 2) Morning Operations
 < 20% Probability of a GDP

- For bad weather and daytime operations, a GDP is almost always used

 Bad Weather
 >91% Probability of a GDP

- For winter weather and low ceiling operations, the use of GDPs is highly variable

 7) Elevated Freezing Precipitation and Reduced Ceilings
 20-90% Probability of a GDP
Outline

- Key Challenges
- Classification and Clustering Methodology
- Experimental Setup
- Results
 - Potential Operational Use
- Conclusions
Potential Operational Use

Today’s Weather and Traffic Observations and Forecasts
Potential Operational Use

Today’s Weather and Traffic Observations and Forecasts

Clusters from Historic Weather and Traffic Observations and Forecasts

- Morning and Nighttime Operations
 58% of Observations

- Fair Weather and High Daytime Operations
 21% of Observations

- Fair Weather and Low Daytime Operations
 11% of Observations

- Reduced Ceilings and Elevated Probability of Precipitation
 7% of Observations

- Bad Weather
 3% of Observations
Potential Operational Use

Today’s Weather and Traffic Observations and Forecasts

Clusters from Historic Weather and Traffic Observations and Forecasts

- Morning and Nighttime Operations: 58% of Observations
- Fair Weather and High Daytime Operations: 21% of Observations
- Fair Weather and Low Daytime Operations: 11% of Observations
- Reduced Ceilings and Elevated Probability of Precipitation: 7% of Observations
- Bad Weather: 3% of Observations
Conclusions

• Airport-level clustering identified hours with similar probabilities of Ground Delay Programs occurring

• Consistently low usage of Ground Delay Programs under good weather and nighttime operations

• Consistency of Ground Delay Program usage is airport dependent under bad weather operations