Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

Thomas P. Ratvasky1, Steven D. Harrah2, J. Walter Strapp3, Lyle E. Lilie4, Fred H. Proctor2, Justin K. Strickland5, Patricia J. Hunt5, Kristopher Bedka2, Glenn Diskin2, John B. Nowak2, T. Paul Bui6, Aaron Bansemer7, Chris Dumont8

1 NASA Glenn Research Center, 2 NASA Langley Research Center, 3 Met Analytics Inc., 4 Science Engineering Associates, 5 Analytical Mechanics Assoc., 6 NASA Ames Research Center, 7 National Center for Atmospheric Research, 8 FAA William J. Hughes Technical Center

Presented by Thomas Ratvasky

SAE International Conference on Icing of Aircraft, Engines, and Structures
June 17-21, 2019 - Minneapolis, MN, USA
Background

- In 2003-05 timeframe, an ARAC Engine Harmonization Working Group (EHWG) reviewed numerous jet-engine powerloss events that occurred near deep convective storms. The effort resulted in a proposed Part 33 Appendix D and a Mixed-Phase/Glaciated Icing Technology Plan to guide future ice crystal icing research.
 - Tasks 1-2 were to improve cloud instruments for HIWC conditions and conduct flight research to characterize HIWC environments

- Mason, et al. (2006), described engine powerloss events and identified some common pilot observations,
 - No significant radar echoes (<30dBz) at flight altitude where engine event occurred

- In 2006, the High Ice Water Content (HIWC) Study was initiated in North America/Australia and developed the HIWC Science Plan\(^1\) to define the aviation and science objectives, including:
 - Investigate use of onboard weather radar to detect HIWC conditions to enable pilots to avoid the HIWC environment

Background

- In 2014 and 2015, the European-led High Altitude Ice Crystal (HAIC) project and HIWC team collaborated to conduct two HAIC-HIWC flight campaigns to acquire data to characterize the deep convective cloud environment and address other aviation and science objectives.

 - 34 research flights of the SAFIRE Falcon 20 equipped with icing probes were conducted from Darwin, Australia (2014) and Cayenne, French Guiana (2015).

 - The data set from these campaigns was substantial and unique, but:
 - Insufficient amount of data at -50°C flight level and
 - No fundamental pilot radar data acquired along with in-situ cloud measurements to develop long-range identification technologies to enable avoidance.
Background

• Post-Darwin, NASA and FAA initiated a collaborative effort to conduct another flight campaign
 - primary objective to quantify pilot weather radar measurements with in-situ measurements of HIWC in deep convective storms.
 - HIWC RADAR I (2015): NASA DC-8, Ft. Lauderdale, FL
 - HIWC RADAR II (2018): NASA DC-8, Ft. Lauderdale, FL/Palmdale, CA/Kona, HI

• Purpose of paper: Summarize how the campaigns were conducted and highlight key results
HIWC RADAR I (2015) Flight Campaign Overview:

- 3 week campaign, 80 flt-hrs based from Ft Lauderdale, FL, Aug 10-31, 2015

- Utilized NASA DC-8 Airborne Science Laboratory
 - Excellent platform for HIWC research:
 » Flight performance: Range (5,400 Nm), Ceiling (41,000 ft), Endurance (12 hr)
 » Instrumentation sites on wing pylons and fuselage

- Operating Area: Caribbean and Gulf of Mexico
 - Climatological analyses supported August timeframe
 - Areas defined to facilitate discussions with ATC and country clearances
HIWC RADAR I Instrumentation:

- Radar I&Q / Reflectivity
 - Honeywell RDR-4000

- Water Content
 - IKP2 (freestream)
 - SEA Robust/ICD (fuselage)

- Particle Spectra
 - DMT CDP2 (2-50 um)
 - SPEC 2D-S (10-1280 um)
 - DMT PIP (100-6400 um)

- Additional fuselage mounted instruments for background humidity, temperature, water content

- DC-8 systems: pitot-static for airspeed/altitude, TAT, GPS, etc.
HIWC RADAR I Sampling Strategies & Concept of Operations

• Sampling Strategies: (consistent with HIWC Science Plan)
 - Oceanic MCSs (diam >100 Nm) with cloud top reaching tropopause; Tropical Storms highly desired
 - Level transects at altitudes associated with -50C, -40C, -30C, -10C ± 5C

• Concept of operations
 - Climatology indicated peak convection in late morning
 - Anticipated life cycles: MCSs ~3 hours; TS ~days
 - Daily morning Wx briefings – identify region of interest, initial way point
 - After takeoff, ground guidance team provide way points, altitude for initial run.
 - Subsequent runs defined during flight. Parallel, offset tracks; or repeat tracks at different altitude
HIWC RADAR I Flight Campaign Outcomes:

Conducted 10 research flights:

- 4 Offshore MCS in Atlantic, Gulf of Mexico
 » Smaller areas of deep convection; shorter life cycle
- 2 Coastal MCS near Louisiana / Texas coast
 » More lightning and air traffic
- 4 Tropical Storm (Danny & Erika) in Caribbean
HIWC RADAR I Flight Campaign Outcomes:

- Offshore MCS (Flight 4) example:
 - Flight tracks of 4 parallel runs with 5 Nm offset
 - TWC variations across parallel runs are consistent
 » IWC generally peaks about 2 g/m3
 » Cloud extent for IWC>0.1 about 40 Nm
HIWC RADAR I Flight Campaign Outcomes:

• Tropical Storm (Flight 10) example:
 - Flight tracks of 2 parallel runs (cyan color) with 10 Nm offset
 - TWC variations across parallel runs are consistent
 » IWC generally peaks about 2 g/m³
 » Cloud extent for IWC>0.1 about 130 Nm

• General comparison of TS to MCS
 - TS provide deeper (colder) and longer data runs
 - TS are have longer life-cycle, predictable path and overall easier for flight planning
HIWC RADAR I Flight Campaign Outcomes: Pitot Probe Anomalies

- Pitot probe icing has occurred in-service events during HIWC encounters.
- During HIWC RADAR I, pitot probe icing occurred in 6 of ten flights.
- Airspeed anomalies were sometime abrupt (120 m/s drop) and other times subtle.
- Flight crew followed pre-planned mission rules and procedures when airspeed anomalies occurred.
- Airspeed corrections were developed post flight and applied to SAT, TWC, PSD/MSD calculations.

Alt=37Kft, Ts=-48C

Descent initiated to warmer air to clear probe of icing
HIWC RADAR I Flight Campaign Outcomes: TAT Probe Anomalies

- TAT probe icing has occurred in-service events during HIWC encounters
- During HIWC RADAR, a TAT probe with in-service events was mounted on the nose near SEA TWC probe. TAT anomalies occurred under when IWC and SAT thresholds were reached.
- TAT anomalies were abrupt. After initial event, recoveries were sometimes incomplete.
- TAT probe location important factor. Other similar TAT probe designs on DC-8 had no TAT anomalies

Alt=37-34Kft, Ts=-49 to -42C
HIWC RADAR I Flight Campaign Key Findings:

• Correlation of radar reflectivity to IWC ¹
 - Conclude reflectivity alone insufficient for IWC detection

• Augmented TWC and PSD/MSD at -50°C data set (68%) for Part 33 Appendix D assessment ²

• Confirmed common observations from in-service events and previous campaigns
 - High IWC in low radar reflectivity
 - Pitot and TAT probe anomalies
 - Water streaming on windscreen in high IWC
 - Linkage of research data to in-service events

• Lessons Learned
 - Tropical storms were good targets for HIWC research flights
 - DC-8 performance excellent; no issues with engine operation in HIWC
 - Need for instrumentation improvements for airspeed, background humidity, winds

¹ Harrah, et al., this conference
² Strapp, et al., this conference
HIWC RADAR II (2018) Flight Campaign Overview:

- As a result of insufficient correlation of RRF to IWC, NASA Langley radar researchers identified other promising radar-based candidates for long-range HIWC detection
 - Dual-polarimetric radar (Wolde, et al.)
 - Swerling (new process relating RRF Index of Dispersion to IWC (Harrah, et al.)

- Second flight campaign to evaluate the new methods
 - 3 week campaign, 50 flt-hrs based from Ft Lauderdale, FL, July 30-Aug19, 2018
 - Utilized NASA DC-8 Airborne Science Laboratory
 - Operating Area: Caribbean and Gulf of Mexico
 - Same sampling strategy, but add -20C flight level
 - Dual-pol not tested due to hardware delivery issue
HIWC RADAR II Instrumentation:

- Same instrumentation suite as 2015 plus:
 - Auxiliary research pitot-static for airspeed/altitude
 - Meteorological Measurement System (MMS) for winds and gusts
 - Diode Laser Hygrometer (DLH) for background humidity
 - Improved inlets for background humidity system
 - N_2 purge for particle probes
 - Hotwire TWC on wing canister and on window mount
 - Collins Aerospace Optical Ice Detector (OID) 3

3 Anderson, et al., this conference
HIWC RADAR II Flight Campaign Outcomes: 7 Research Flights

- Initial flights from Ft. Lauderdale, FL into Offshore MCS in Gulf of Mexico
 - Smaller scale storms
 - 2 flights in 8 days
 - Dry air/dust off Africa and cooler ocean temps in Caribbean suppressing deep convection
 » Forecasts indicated much the same for duration
 - Meanwhile, multiple MCS and tropical storms/hurricanes developing in eastern Pacific

- Decision Time
 - During post flight debrief (Aug-06), team discussed option to re-deploy back to AFRC and sample storms in Pacific
 - By end of meeting, decided to return to AFRC
 - Ferry flight back on Aug-08
HIWC RADAR II Flight Campaign Outcomes: 7 Research Flights

• After unplanned engine swap, 5 flights were made over the eastern Pacific
 - Aug-15: Tropical Storm Lane
 - Aug-16: Tropical Storm Lane
 - Aug-18: Hurricane Lane – Cat 4
 - Aug-19: Hurricane Lane – Cat 3
 - Aug-20: Hurricane Lane – Cat 4

• Long transit flights (> 3 hr) from Palmdale; rebase from Kona, Hawaii for last 3 flights

• Large scale deep convection (~300 Nm diameter)
HIWC RADAR II Flight Campaign Outcomes: TS Lane Example

Satellite Products
- Strategic planning
 » deep, cold cloud areas where high IWC anticipated
 » Areas of overshooting tops
- Tactical planning
 » As storm at left was ebbing, HIWC zones were shrinking
 » Near end of flight, pilots flew to intercept “string of pearls” visible in feeder bands and based on Swerling R-IWC

[Images of IR Brightness Temperature and NASA LaRC HIWC Probability]
HIWC RADAR II Flight Campaign Outcomes: TS Lane Example

• Swerling R-IWC: real-time, onboard guidance
 - IWC thresholds, 0.5 g/m3 steps
 - ~ 50 Nm range, initial detection of small region with IWC ~ 2.5-3 g/m3
 » Radar team notified crew and monitored
 - ~30 Nm range, the region of IWC ~ 2.5-3 g/m3 increased about 5 Nm wide
 » Radar team requested left turn to intercept
 - When DC-8 passed through the radar-identified region, the IKP recorded IWC 1.5-2.2 g/m3 with peak of 3.6 g/m3
 » R-IWC generally lower, but within 1 g/m3 of IKP

• These encounters increased confidence in Swerling R-IWC product and was used to guide flight tracks in remaining flights
HIWC RADAR II Flight Campaign Key Findings/Contributions:

- Swerling concept can identify HIWC conditions in low RRF about 60 Nm ahead of the aircraft\(^1\)
- Data can be compared to HIWC characterization data from previous flights
- Satellite diagnostic products from NASA Langley were very useful for strategic and tactical guidance\(^4\)

\(^1\) Harrah, et al., this conference
\(^4\) Bedka, et al., this conference

Lessons Learned

- Diode Laser Hygrometer solved a prior problem of measuring background humidity in HIWC conditions on the DC-8
- DC-8 pitot anomalies occurred, but MMS provided accurate and reliable true airspeed
- DC-8 performance capabilities were critical for this campaign
HIWC RADAR Flight Campaign Summary:

- Two flight campaigns (2015 and 2018) using NASA DC-8 successfully flew in deep convective storms to acquire high IWC data with pilot weather radar and in-situ instruments
 - Demonstrated radar-based technique to identify HIWC conditions at 60 Nm ahead of airplane
 - Acquired data at -50C altitude for Appendix D characterization
 - Provided validation data for HIWC diagnostic products
- Future Work:
 - Continued evaluation of Swerling technique and other data from the flight campaigns
 - Working groups in RTCA and ARAC