X-ray Evaluation of the MaGIXS Nickel-Replicated Mirrors

Patrick Champey1
August 15, 2019

Athiray Panchapakesan2, Amy R. Winebarger1, Ken Kobayashi1, Sabrina Savage1, Jacqueline Davis1, Charlie Griffith1, Jeffery K. Kolodziejczak1, and Brian D. Ramsey1

1. NASA Marshall Space Flight Center, Huntsville, AL 35812
2. Universities Science Research Association, Huntsville, AL 35899
The Marshall Grazing Incidence X-ray Spectromter (MaGIXS)

Experiment Overview:

- Solar sounding rocket experiment
- 2020 Launch – WSMR, NM
 - Black Brandt - IX
- NASA MSFC developed optics, optical bench, detector
- Partner institutions:
 - SAO – mirror mounting and alignment
 - MIT & Izentis LLC. – grating design and fabrication
Science Goals: Probe Coronal Heating

- Measure the temperature distribution (Differential Emission Measure) of the solar corona
- Measure the elemental abundance in the solar corona

Observation Goals:

- Energy range: 0.57 – 1.3 keV (0.91 – 2.16 nm)
- Energy resolution: ~1 eV (0.005 nm)
- Slit spectrograph with 260” slit length
- 6” spatial resolution along slit
Wolter-I Telescope:
- Nickel Replicated
- Focal length = 1090 mm
- Diameter = 150 mm
- Graze angle = 1.0°

Spectrometer:
- Nickel Replicated
- Finite conjugate pair
- Focal length = 594 mm
- Planar varied-line-space grating
- 1.3° blaze

Detector:
- CCD camera
- e2v 2k x 2k frame-transfer
- 2k x 1k active region
- 15 μm pixels

*Aperture defined by planar grating: effective aperture ~36°
Instrument Layout

Telescope Section

Spectrometer Section

Telescope Mirror Assembly (TMA)

Interface to Rocket

Spectrometer Mirror Assembly (SOA)

CCD Camera

~3 m Experiment Section

NSROC – Telemetry, Boost Guidance, FTS, Recovery
Mirror Fabrication

- Mandrels diamond turned
- Lap polished
- Replicated engineering shells
- Deterministic polishing
- Lap polished for surface roughness
- Replicated flight shells

RMS slope error of mandrel figure

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolter-I P</td>
<td>~4.0”</td>
<td>19.5”</td>
<td>0.72” 0.99”</td>
<td>6.4”</td>
</tr>
<tr>
<td>Wolter-I H</td>
<td>~6.0”</td>
<td></td>
<td>1.26” 1.51”</td>
<td></td>
</tr>
<tr>
<td>Spec. P</td>
<td>~8.0”</td>
<td>22”</td>
<td>1.5” -</td>
<td>4.0”</td>
</tr>
</tbody>
</table>

MaGIXS Mandrel on Zeeko IRP 600X

MaGIXS Spectrometer Mandrel

See paper 11119-30 by Jackie Davis, MSFC
Mirror Shells

Wolter-I Telescope

Spectrometer Mirrors - Single Paraboloid

254 mm (~10")

150 mm (~6")

84 mm (~3.3")

80 mm (~3.1")
SLF X-ray Tests in Stray Light Facility (SLF), MSFC

- 5' diameter guide tube
- 10' diameter test chamber
- Bell jar with 3-axis stage
- 3-Axis stage: pitch, yaw and focus

Detector: Andor Ikon-L
- 2k x 2k CCD
- 13.5 um pixels

Retractable aperture mask
Effective aperture
103 m beamline
X-ray source
5' diameter guide tube
10' diameter test chamber

8/26/2019 SPIE Optics + Photonics - Champey et al. 11119-43 8
TMA Best Focus Image

- plate scale = 2.5 arcsec/pix
- Pixel size = 13.5 μm

Modeled PSF - 2D Gaussian

- FWHM (x,y) = 10.02", 10.55"
- Symmetric Gaussian PSF
6 mm Intra-Focus

Radial profiles, $\Delta \theta = 1$ degree

- **FWHM** = 5 pixels (12.5")
- **HPD** = 12.5"

![Radial profiles graph]
Effective Aperture

- PSF yields "bowtie" shape
- Spatial along bowtie
- Spectral dispersion across bowtie

Through-focus effective aperture
- Effective aperture has “S” shaped curvature
- Contributes to PSF

TMA - Best Focus
HPD = 70.05µm (13.4"")

Δf = -6.0 mm
• Half power diameter (HPD) measured at each focal position

• **Green** = Full aperture

• **Red** = Masked aperture

• Similar depth of focus ~1 mm
Spectrometer Mirror PSFs

- 594 mm focal length
- plate scale = 5 arcsec/pix
- Pixel size = 13.5 μm
Defocused Spec. Mirror

- Deterministic polishing over 100 degree region
- Qualitative improvement in figure (annulus) over polished region
- Measurements with aperture mask not completed
Predicted On-Axis Performance

- Multiplied TMA full aperture PSF with a mask representing slit
- Convolved SM1 and SM2 images
- Convolved SM1, SM2 and TMA sub-aperture image

<table>
<thead>
<tr>
<th></th>
<th>W-I</th>
<th>SM1</th>
<th>SM2</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPD</td>
<td>13”</td>
<td>21”</td>
<td>20”</td>
<td>31”</td>
</tr>
</tbody>
</table>

HPD = 159.83μm (30.58")
Current Progress – TMA Focusing

- SLF HPD measurements
- Dotted line is a fit to SLF HPDs
- + = XRCF measured HPD
On-Axis Focus Check

First off axis pointing

"seq2"

Second off axis pointing
Also labeled “seq2”, but after 17:15

Third off axis pointing
“seq3”

Final off axis pointing
“seq4”

First off axis pointing
“seq2”
MaGIXS is a high-resolution imaging spectrometer – solar sounding rocket mission
 - Solar active region
 - 0.57 – 1.3 keV (~ 1 eV resolution)

Mandrels polished using deterministic technique

Replicated shells tested at the MSFC SLF

Predicted on-axis HPD ~ 30”

Future work includes continued development for image analysis techniques
 - Envision these types X-ray image data to supplement metrology