A phenolic based polymer with a spring-like structure

Charles W. Bauschlicher, Jr.*†

NASA Ames Research Center, Moffett Field, CA 94035

Abstract

We report the stretching potentials for a helical phenolic-based polymer with high symmetry and a spring-like structure that can be stretched by a factor of 4 along the spring direction and still return to its original structure. We hope that synthetic polymer chemists assess if this polymer or a similar one can be synthesized and tested.

Keywords: Hydrogen bond, DFT, low density polymer, stretching potentials

* Mail Stop 230-3, Entry Systems and Technology Division
I. INTRODUCTION

Carbon phenolic is an important polymer in thermal protection systems (TPS), for example it is used to protect reentering space craft. In a series of recent manuscripts we investigated the thermal and mechanical properties of carbon phenolic. We observed that the thermal and mechanical properties depended on the degree of cross-linking, as expected. Our simulations found a maximum approximately 85% of the possible sites were cross-linked, which is the same value deduced from experiment. Increasing the cross linking is a possible way to improve the mechanical and thermal properties. However, for the current polymer, where the $\text{C}_6\text{H}_3\text{OH}$ units are bridged by CH_2 groups, it is highly unlikely that the percentage of cross linking can be increased. We investigated changing the bridging groups to introduce more flexibility, in hope that this would lead to an increase in the cross-linking.

One of the systems that we considered replaced the CH_2 bridges with C_2H_4 groups. While this change did not significantly change the strength of the bridge bonds, the longer bridge groups introduced extra degrees of rotational freedom. In subsequent simulations of a single carbon phenolic chain, we discovered that it could wind into a helical or spring-like structure. By cross-linking the springs, it is possible to create a low density 3D structure. With low density being one of the desired properties for TPS on space craft. In this manuscript we report on one possible structure of these connected springs that has a very interesting stretching potential.

II. METHODS

Density functional theory (DFT) calculations were performed at 0 K using the Gaussian 09 program system. The BPW91 functional and the 6-31G* basis set were used. Periodic boundary conditions (PBC) were applied in three directions. This level of theory was used because it gives a good description of organic systems; for example the C-H and C-C bond energies in C_2H_6 (96 and 88 kcal/mol, respectively) are in good agreement with the best values (101 and 90 kcal/mol) deduced from the heats of formation given in the NIST chemistry webbook. The geometry was fully optimized, that is, both position of the atoms and the lattice vectors were
optimized. Starting from this equilibrium geometry, one lattice vector was expanded
or contracted in steps of 0.25 Å and the atomic positions and the other two lattice
vectors were optimized at each step. This corresponds to an infinitely slow strain
rate.

III. RESULTS AND DISCUSSION

The fully optimized phenolic based polymer is shown in Figs. ??-??. Fig. ?? shows
the unit cell, which contains four phenolic segments. The hydrogen bonds between
the phenolic segments are visible. A C₂H₄ bridge between chains is shown in the oval
labeled A in the figure, while a C₂H₄ bridge along the backbone of the spring is shown
in B. Fig. ?? shows a (3x2x1) cell with two spring units visible; also shown are the
C₂H₄ bridges between the two springs. Springs along the third lattice vector are also
connected by C₂H₄ bridges, but are omitted for clarity. The C₂H₄ bridges between
the adjacent springs means that the springs are shifted along the spring direction with
respect to each other, leading to a monoclinic cell where the angles between the lattice
vectors are not 90°. A view down the springs is shown in Fig. ??). The very open
structure between the springs is clearly visible in this orientation. The optimized
lattice vector along the spring direction is 6.30 Å, while the other two vectors are
15.38 Å. This yields a system with a density of 0.600 g/cm³, which is about half the
density of cross-linked carbon phenolic with the standard CH₂ bridges.

The stretching potentials are shown in Fig. ??). The potential associated with the
stretch along the springs axis rises slowly until approximately 16 Å then flattens out.
This initial rise is associated with stretching and then breaking the hydrogen bonds
between the OH groups on the spring. In the flat region, the springs are elongating
by rotation about the C₂H₄ bridges. At approximately 26 Å, the elongation shifts
to bond stretching and the energy rises steeply, as expected. Compression along the
spring direction quickly results in atoms in one rotation of the spring interaction with
the banging into atoms in the next twist of the spring and not surprisingly the energy
rises quickly.

The stretching along the spring appears to be reversible even for displacements of a
factor of 4 or more for finite temperatures, which should allow the contracting spring
to pass over the small barrier at about 18 Å. Such a dramatic stretch is perhaps not
completely unexpected for a spring-like structure.

The stretching along the lattice vector that is approximately perpendicular to the
spring is very different. Stretching along this direction quickly leads to a rapid quick
rise in energy as the C(ring)-C_2H_4 angles bend and C-C bonds stretch. On the other
hand, the compression is much easier as the spring can begin to slip and tilt and it
is not until it is very distorted that atoms begin to collide and the energy begins to
rise quickly. The beginning of this compression is shown in Fig. ??, where the tilt
of the springs is visible. As the compression continues, the structure becomes very
distorted and it is hard to identify the springs.

We found the spring-like structure for a single polymer chain when it wound up
in simulations, driven by the hydrogen bonding between the OH groups. One could
imagine that a single chain would wind up by itself in a hydrophobic solvent. Thus
the synthesis of a 3-D structure might be reduced to linking the springs together.
However, the possibility of making such a 3-D structure is a problem for synthetic
chemists, and not easily open to computational simulation.

In thermal protection systems for reentering spacecraft, the carbon phenolic poly-
mer needs to be “fluffy” to fill in the space between the carbon fiber, thus protecting
the fibers from erosion by the hot gases heated by the shock in front of the space
craft. It might be possible to make the space between the springs even larger by
changing the bridging group between the springs and hence make a naturally fluffy
system that would be useful in TPS. In this regard we note that changing the C_2H_4
bridges between the springs with one or two benzene derived bridges, i.e. (C_6H_4)_n,
for n=1 or 2, reduces the density from 0.600 g/cm³ to 0.545 and 0.421, respectively.
This also changes the size of channel between the springs, which might be of interest
in some other applications.
IV. CONCLUSIONS

We have found a polymer that can wind into a spring like structure, driven by the hydrogen bonds along the polymer backbone. Bridging the springs by \(C_2H_4 \) groups leads to a 3-D structure that has about half the density of the typical form of carbon phenolic. The stretching potential for the 3-D form is very interesting, where the system can be stretched by about a factor of four and still return to its original structure. We suggest that this interesting polymer deserves some additional attention, especially by synthetic polymer chemist to assess if this species or a similar one can be prepared and tested.

† Electronic address: Charles.W.Bauschlicher@nasa.gov

7 webbook.nist.gov/chemistry

FIG. 1: Two views of the unit cell consisting of 4 phenolic segments connected by C_2H_4 bridges. The hydrogen bonds are shown as dashed lines. The oval labeled A shows a C_2H_4 bridge between springs while B shows a C_2H_4 bridge in the same spring structure.
FIG. 2: A (3x2x1) cell showing two springs of three turns each. One of the C$_2$H$_4$ bridges between the two springs is enclosed in the oval. The lattice vectors are also shown.

FIG. 3: A view down the springs.
FIG. 4: The potential energy curves for stretching the polymer along two of the lattice vectors. The red curve with a minimum near 6 Å is for the lattice vector along the springs axis while the green curve with a minimum near 15 Å is along one of the lattice vectors that are approximately perpendicular to the springs axis.
FIG. 5: The equilibrium structure on the left and the compressed structure on the right, where the lattice vector has been shortened from 15.38 to 12 Å.