Near Real-Time Sub/Seasonal Prediction of Aerosol at NASA Global Modeling and Assimilation Office

Andrea Molod, Zhao Li

with help from: Anton Darmenov, Peter Colarco

GMAO Seasonal Prediction Development/Validation Group and Participants:

Eric Hackert, Santha Akella, Lauren Andrews, Nathan Arnold, Donifan Barahona, Anna Borovikov, Richard Cullather, Robin Kovach, Randal Koster, Young-Kwon Lim, Jelena Marshak, Kazumi Nakada, Siegfried Schubert, Yury Vikhliaev, Bin Zhao
Near Real-Time Sub/Seasonal Prediction of Aerosol at GMAO

• Global Modeling and Assimilation Office – scope of activities, focus on sub/seasonal prediction

• Sub/Seasonal Prediction – sources of predictability and skill

• Why interactive aerosol?

• GMAO aerosol forecasts: Bias and skill of AOD, PM2.5

• Future Plans (hint: fire prediction model!)
Major Activities in GMAO: from Research to Products

- Weather Analysis and Prediction
- Seasonal-to-Decadal Analysis and Prediction
- Reanalysis
- Global Multiscale Modeling
- Observing System Science

- These (non-orthogonal) themes span GMAO’s main activities
- Guiding principle: NASA’s Earth Observations (use, support, planning).
- Overall intent: to demonstrate added value of NASA’s unique observations for weather analysis and prediction, reanalysis, and subseasonal-to-seasonal prediction.
- All themes include multiple elements of the Earth System

Slide adapted from Steven Pawson
GMAO uses coupled Earth-System models and analyses, in conjunction with satellite and *in situ* observations, to study and predict phenomena that evolve on seasonal to decadal timescales. A central motivation for GMAO is the innovative use of NASA satellite data to improve forecast skill.

- Atmosphere/Ocean Coupled Model Development
- Ocean Analysis Development
- Development of Initialization Strategy for ensembles of Sub/Seasonal Forecasts
- Coupled Assimilation Strategy Development

- Production of Coupled Data Assimilation (Re)Analysis
- Production of Sub/Seasonal Forecasts
- Dissemination of Sub/Seasonal Forecasts

- Validation/Assessment of Forecast Fidelity
- Validation/Assessment of Assimilated Ocean State

- Predictability Studies
GMAO’s Near Real-Time Sub/Seasonal Prediction Suite

GMAO’s GEOS S2S coupled Ocean Data Assimilation system runs in near real time and is used to initialize our sub/seasonal forecasts. Results are generally examined in terms of anomaly from some climatology, derived from a series of retrospective forecasts.

<table>
<thead>
<tr>
<th></th>
<th>Subseasonal</th>
<th>Seasonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Forecast</td>
<td>45 days</td>
<td>9-12 months</td>
</tr>
<tr>
<td>Frequency of forecasts</td>
<td>Every 5 days</td>
<td>Every 5 days</td>
</tr>
<tr>
<td>Number of Ensembles</td>
<td>4 per start date</td>
<td>Total of 10 per month</td>
</tr>
<tr>
<td>Frequency of submission</td>
<td>Once per week</td>
<td>Once per month</td>
</tr>
<tr>
<td>Availability</td>
<td>~3 days after real time</td>
<td>Once per month</td>
</tr>
<tr>
<td>Initial Conditions from</td>
<td>GEOS ODAS</td>
<td>GEOS ODAS</td>
</tr>
<tr>
<td>Retrospective forecasts</td>
<td>1999-2016</td>
<td>1981-2016</td>
</tr>
</tbody>
</table>

Current Seasonal Prediction System - GEOS S2S Version 2

Model
- AGCM: Post MERRA-2 generation, cubed sphere grid at ~0.5º, 72 hybrid sigma/pressure levels; GOCART interactive aerosol model, cloud indirect effect (2-moment cloud microphysics); MERRA-2 generation cryosphere;
- OGCM: MOM5, ~0.5º, 40 levels;
- Sea Ice: CICE-4.0.

Coupled Ocean Data Assimilation System
- atmosphere is “replayed” to “FPIT” (like MERRA-2); precipitation correction over land;
- NCEP-like LETKF code/system, with static statistics as in Ensemble OI;
- Forecasts: initialized from ODAS, perturbations from analysis differences;
- Retrospective forecasts: re-initialized from 5-day run of ODAS, perturbations from analysis differences;

Observations
- nudging of SST and sea ice fraction from MERRA-2 boundary conditions;
- assimilation of in situ Tz and Sz including Argo, XBT, CTD, tropical moorings;
- assimilation of satellite along-track ADT (Jason, Saral, ERS, GEOSAT, HY-2A, CryoSat-2);
- sea ice concentration from the National Snow and Ice Data Center (NSIDC).
A Word (or Two) about Seasonal Prediction

What is predictable at Seasonal Lead Times?
- Time averages
- Spatial averages
- Probabilistic Measures (PDFs)

Ensemble forecasts needed to predict PDFs, must assess reliability

Forecasts require calibration, or removal of mean bias or of mean bias and variance (standardization). For this we need reforecasts. Calibrated forecasts are more reliable.

Multi model ensembles help (Krishnamurti et al., 1999; Palmer et al., 2004) skill, but not clear why. It does reduce overconfidence.

The longer the lead time, the longer the period of time average needed. This increases the signal to noise ratio enough to obtain reliable forecasts.

Troccoli, 2010
A Word (or Two) about Seasonal Prediction

WEATHER FORECASTS
predictability comes from initial atmospheric conditions

S2S PREDICTIONS
predictability comes from initial atmospheric conditions, monitoring the land/sea/ice conditions, the stratosphere and other sources
(NAO, PNA, MJO…)

SEASONAL OUTLOOKS
predictability comes primarily from sea-surface temperature conditions; accuracy is dependent on ENSO state
(ENSO, PDO, AMM…)

FORECAST RANGE

https://www.weadapt.org
A Word (or Two) about Seasonal Prediction

The issues related to seasonal prediction (of aerosol, constituents, air quality):

What exactly is predictable/being predicted?

Bias/drift – Will impact the skill of a forecast

Anomaly Correlation – The critical metric for assessing the skill of a forecast. Will next month/seasonal be characterized by higher/lower than “normal” conditions? How much? With what probability?

AOD vs PM2.5 – AOD is better initialized, PM2.5 more useful

Other possible options for air quality:
Example: The number of exceedance days in a month/season (need full chemistry or CTM driven with seasonal forecast meteorology)
Why Interactive Aerosol Model?

• There may be more useful skill in AOD/PM2.5 seasonal forecasts than from a statistical model or climatology (Benedetti and Vitart, 2018 for AOD)

• May increase weather/subseasonal skill under certain conditions (forecasts of opportunity) such as the impact of dust on tropical cyclone development. (eg., Reale et al., 2011 using GMAO NWP system)

• May increase seasonal skill in the aftermath of a large volcanic event (eg., Aquila et al 2019 using GMAO-S2S-2 system).

• May increase subseasonal forecast skill (Benedetti and Vitart, 2018)

• Postulated to have an impact on decadal prediction skill (Bellucci et al., 2015)
Community Activity/Interest in Interactive Aerosol Models

WGNE-S2S-GAW (WCRP Working Group on Numerical Experimentation-Subseasonal to Seasonal Project-Global Atmospheric Watch) Phase 2 will ask models to run retrospective forecasts with interactive aerosols. GMAO will participate.

GMAO is the only model participating in either NMME or SubX or WCRP S2S (i.e., near real-time forecasts on sub/seasonal scale) that has been running with interactive aerosol model and 2-moment microphysics that includes the direct, semi-direct and indirect aerosol effect.

A few other groups (ECMWF) have run retrospective forecasts to assess the impact of an interactive aerosol model on sub/seasonal forecasts, but include the direct effect only, no semi- or indirect.

GEOS-S2S-2
(1-month lead)

MERRA-2

JAS

DJF

Molod et al., 2019
Bias: Aerosol Optical Depth difference (GEOS-S2S-2 – MERRA-2)
Bias and RMS: Global Mean Aerosol Optical Depth (2000-2015)

JAS

R: 0.81
R^2: 0.65
y = 1.1016x - 0.0129
RMS: 0.006
Mean Bias: -0.001
N: 46

DJF

R: 0.73
R^2: 0.54
y = 0.8496x + 0.0180
RMS: 0.005
Mean Bias: 0.015
N: 46

Result from: Freire and Longo
Anomaly Correlation (AC): PM2.5 from May initial conditions

“Naïve” calculation of AC:
AC (sum of components of PM2.5)

Recompute AC:
Remove SO$_4$ from PM2.5
SO$_4$ Bias relative to MERRA-2

Systematic excess of SO$_4$ in seasonal forecast relative to MERRA-2 “overwhelms” the Anomaly Correlation, SO$_4$ anomaly dominates
SO$_4$ Bias and In-cloud Production

Systematic excess of SO$_4$ is due to an excess of in-cloud aqueous production (cloud fraction higher than in MERRA-2)
Anomaly Correlation (AC): PM2.5 from May initial conditions

“Naïve” calculation of AC:
AC (sum of components of PM2.5)

Recompute AC:
Sum of AC of all components

Must compute PM2.5 anomaly this way for skillful forecast
Impact of Fire Emissions on Seasonal AOD Hindcasts

Regionally averaged AOD skill in S. America (2000-2015)

Skill critically dependent on skill of biomass burning emissions, climatological emissions not adequate for predicting interannual variability of AOD. Interannual variability of transport/removal processes are second order.

Predictive biomass burning algorithm needed for skillful seasonal AOD forecast

Result from: Freire and Longo
Summary

- Dynamical predictions of PM2.5 on sub/seasonal scale can be skillful
- Bias in one component of PM2.5 can adversely impact skill if care is not taken to provide the proper forecast
- Predictive biomass burning model is needed
- Future work: Assessment of impact of interactive aerosol model on meteorological forecast skill, and to identify “forecasts of opportunity”