Pixel Level Smoke Detection Model with Deep Neural Network

Muthukumaran Ramasubramanian1, Aaron Kaulfus1, Manil Maskey2, Rahul Ramachandran2, Iksha Gurung1, Brian Freitag1, Sundar Christopher1

1-University of Alabama in Huntsville
2-NASA/Marshall Space Flight Center
Introduction

- Biomass burning smoke has numerous detrimental environmental and ecological impacts
 - Respiratory and cardiovascular illnesses
 - Radiation budget
 - Nutrient availability
- Impacts realized both near source and potentially thousands of kilometers downwind depending on
 - Fire duration
 - Amount and type of biomass burned
 - Meteorological and fuel conditions
 - Vertical distribution in the atmosphere

Spatial distribution of MODIS fire occurrence and NOAA HMS smoke for summer 2006-2015. From Kaufus et al. 2017 Figure 2.
Introduction

- Current methods present challenges for continuous smoke detection and monitoring
 - In-situ monitoring
 - Temporal, spatial, and tracer limitations
 - Remote sensing
 - Polar orbiting, once-daily overpass
 - Manual or computational intensive multispectral analysis
 - Large data volumes
 - Multiple class multispectral classification
Objectives

• Deploy a smoke detection model using machine learning on satellite remote sensing observations
 • Leverage observations from the new generation of geostationary satellite
 • High spatial and temporal resolutions over large domains
 • Alternative to multispectral analysis
 • Eliminate time consuming, subjective manual analysis
Truth Dataset

• Geostationary Operational Environmental Satellite 16 shortwave reflectance data
 • Bands 1-6 (0.47, 0.64, 0.86, 1.37, 1.6 and 2.2 μm)
 • Access L1B radiance data from AWS
 • Convert to reflectance
 • Spatially resample to 1km
• National Oceanic and Atmospheric Administration (NOAA) Hazard Mapping System (HMS) smoke analysis
 • Satellite based operational daily analysis of smoke extent over the US and surrounding areas
 • Manual quality controlled by subject matter expert to correctly match smoke extent in GOES 16 image

GOES 16 band 1 radiance with nearest in time HMS shapefiles (magenta and purple)
Truth Dataset

• Geostationary Operational Environmental Satellite 16 shortwave reflectance data
 • Bands 1-6 (0.47, 0.64, 0.86, 1.37, 1.6 and 2.2 μm)
 • Access L1B radiance data from AWS
 • Convert to reflectance
 • Spatially resample to 1km

• National Oceanic and Atmospheric Administration (NOAA) Hazard Mapping System (HMS) smoke analysis
 • Satellite based operational daily analysis of smoke extent over the US and surrounding areas
 • Manual quality controlled by subject matter expert to correctly match smoke extent in GOES 16 image

GOES 16 band 1 radiance with nearest in time HMS shapefiles (magenta and purple) with subject matter quality controlled shapefile (blue).
• Analyze 122 scenes containing smoke
 • 962,691 smoke pixels
 • Over low and high background reflectances (land and ocean)
 • Low and high optical thicknesses
 • Full range of sun angles
 • Contain relevant classes to discriminate smoke from including
 • Snow and ice
 • Clouds
 • Dust
 • 60% - 20% - 20% distribution of smoke pixels between training, validation and testing datasets
• Apply a pixel based Convolutional Neural Network (CNN)
 • Input \((N*2)*(N*2)\) neighborhood of reflectance values surrounding a center pixel (sample)
 • 3 convolutional layers
 • Each convolutional layer followed by max-pooling layer
 • Convolutional outputs are flattened into vectors
Model Architecture

- Apply a pixel based Convolutional Neural Network (CNN)
 - Input \((N*2)^2\) neighborhood of reflectance values surrounding a center pixel (sample)
 - 3 convolutional layers
 - Each convolutional layer followed by max-pooling layer
 - Convolutional outputs are flattened into vectors
Model Architecture
Model Architecture

Input Channel

Filter

190 + 210 + 200 =

Convolved Feature

14

1024

40 25 10 5 1
Model Architecture

- Apply a pixel based Convolutional Neural Network (CNN)
 - Input (N*2)*(N*2) neighborhood of reflectance values surrounding a center pixel (sample)
 - 3 convolutional layers
 - Each followed by max-pooling layer
 - Convolutional outputs are flattened into vectors
Model Architecture

```
<table>
<thead>
<tr>
<th>495</th>
<th>685</th>
<th>600</th>
<th>595</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>515</td>
<td>665</td>
<td>595</td>
<td>550</td>
<td>...</td>
</tr>
<tr>
<td>510</td>
<td>650</td>
<td>710</td>
<td>675</td>
<td>...</td>
</tr>
<tr>
<td>490</td>
<td>705</td>
<td>675</td>
<td>625</td>
<td>...</td>
</tr>
<tr>
<td>450</td>
<td>555</td>
<td>600</td>
<td>620</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>685</th>
<th>600</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>705</td>
<td>710</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
```
• Apply a pixel based Convolutional Neural Network (CNN)
 • Input \((N*2)*(N*2)\) neighborhood of reflectance values surrounding a center pixel (sample)
 • 3 convolutional layers
 • Each followed by max-pooling layer
 • Convolutional outputs are flattened into vectors
Model Architecture

• Apply a pixel based Convolutional Neural Network (CNN)
 • 4 fully connected layers with activation function calculation $g(Wx + b)$
 • x is the flattened input vector
 • W is the weight matrix
 • b is the bias vector
 • Dropout for each fully connected layer
Model Architecture

- Apply a pixel based Convolutional Neural Network (CNN)
 - 4 fully connected layers with activation function calculation $g(Wx + b)$
 - x is the flattened input vector
 - W is the weight matrix
 - b is the bias vector
 - Dropout randomly for each fully connected layer
Model Architecture

(a) Standard Neural Net

(b) After applying dropout.
The model outputs the probability, ranging from 0 to 1, that a pixel is smoke determined by a sigmoid function:

\[p(x) = \frac{1}{1 + e^{-x}} \]

\(p > 0.5 \) threshold applied to define smoke
Neighborhood Selection

- Best neighborhood size (N) determined by iterating model development and testing for increasing N
 - All other parameters including data, learning rate and model hyper-parameters are held constant
- Best model selected when validation loss did not improve for 20 epochs
Development Testing

<table>
<thead>
<tr>
<th>N</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.654</td>
<td>0.328</td>
<td>0.437</td>
<td>0.897</td>
</tr>
<tr>
<td>3</td>
<td>0.650</td>
<td>0.384</td>
<td>0.483</td>
<td>0.900</td>
</tr>
<tr>
<td>5</td>
<td>0.724</td>
<td>0.449</td>
<td>0.554</td>
<td>0.912</td>
</tr>
<tr>
<td>7</td>
<td>0.835</td>
<td>0.419</td>
<td>0.558</td>
<td>0.919</td>
</tr>
<tr>
<td>9</td>
<td>0.639</td>
<td>0.498</td>
<td>0.560</td>
<td>0.905</td>
</tr>
</tbody>
</table>

The F1 Scores, or the harmonic mean of Precision and Recall, for N=5,7,9 is comparable

- Trade-off between quality and quantity of smoke predictions
- Best model has low false positive detection rate which drives high precision
 - Prefer conservative identification over incorrect classification
- Accuracy artifact of large number of True Negatives

\[
\text{Precision} = \frac{TP}{TP + FP} \\
\text{Recall} = \frac{TP}{TP + FN} \\
\text{Accuracy} = \frac{TP + TN}{TP + TN + TP + FN} \\
F1 \text{ Score} = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}
\]
Results

- Model updated to account for variation in solar zenith angle
 - The training and testing datasets for the updated model differ from that used for the initial development
 - Results are comparable between the initial and updated models
- Better predictive capability of smoke over water
 - Compared to land, the relative decrease in true negatives over water drives a slight decrease in accuracy

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dev.</td>
<td>0.835</td>
<td>0.419</td>
<td>0.558</td>
<td>0.919</td>
</tr>
<tr>
<td>All</td>
<td>0.736</td>
<td>0.453</td>
<td>0.561</td>
<td>0.923</td>
</tr>
<tr>
<td>Land</td>
<td>0.631</td>
<td>0.383</td>
<td>0.476</td>
<td>0.928</td>
</tr>
<tr>
<td>Water</td>
<td>0.923</td>
<td>0.585</td>
<td>0.717</td>
<td>0.900</td>
</tr>
</tbody>
</table>
• Smoke identified over both land and ocean
 • Model identifies well defined plumes for scenes with absence of complex features
 • Probabilities resemble visually observed optical thickness
• Predictions closer resemblance to quality controlled shapefiles

GOES 16 pseudo-RGB with contoured model predictions (shading), HMS shapefiles (magenta and purple), and subject matter quality controlled shapefile (blue).
• Distinguishable from chlorophyll commonly found in coastal settings
• Discriminate smoke from fair weather cumulus cloud
• Spectral information for other classes not provided to the model

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.744</td>
<td>0.604</td>
<td>0.666</td>
<td>0.948</td>
</tr>
<tr>
<td>Land</td>
<td>0.847</td>
<td>0.244</td>
<td>0.379</td>
<td>0.976</td>
</tr>
<tr>
<td>Water</td>
<td>0.742</td>
<td>0.623</td>
<td>0.677</td>
<td>0.943</td>
</tr>
</tbody>
</table>

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).
• Successfully discriminates land surface snow/ice from smoke
 • Over snow capped mountains for this case
• Detection challenges for optically thin smoke over arid regions

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.848</td>
<td>0.318</td>
<td>0.462</td>
<td>0.977</td>
</tr>
<tr>
<td>Land</td>
<td>0.848</td>
<td>0.319</td>
<td>0.463</td>
<td>0.977</td>
</tr>
<tr>
<td>Water</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.984</td>
</tr>
</tbody>
</table>

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).
• Large and small plumes
• Identification over both land and ocean
• Coastal stratus clouds

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.970</td>
<td>0.919</td>
<td>0.944</td>
<td>0.961</td>
</tr>
<tr>
<td>Land</td>
<td>0.904</td>
<td>0.754</td>
<td>0.823</td>
<td>0.920</td>
</tr>
<tr>
<td>Water</td>
<td>0.986</td>
<td>0.965</td>
<td>0.975</td>
<td>0.980</td>
</tr>
</tbody>
</table>
Smoke not detected at very low sun angles
 * Compounded by low optical thickness over relatively high reflective surface
 * Probability of being smoke is low for few pixels that are identified

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.995</td>
<td>0.093</td>
<td>0.171</td>
<td>0.823</td>
</tr>
<tr>
<td>Land</td>
<td>0.995</td>
<td>0.093</td>
<td>0.171</td>
<td>0.822</td>
</tr>
<tr>
<td>Water</td>
<td>0.923</td>
<td>0.585</td>
<td>0.717</td>
<td>1.000</td>
</tr>
</tbody>
</table>

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).
• Overprediction of plume extent
 • Artifact of large (N=7) neighborhood size
 • Non-zero floor to number of false positives

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.830</td>
<td>0.738</td>
<td>0.781</td>
<td>0.981</td>
</tr>
<tr>
<td>Land</td>
<td>0.830</td>
<td>0.738</td>
<td>0.781</td>
<td>0.981</td>
</tr>
<tr>
<td>Water</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.993</td>
</tr>
</tbody>
</table>

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).
• Other atmospheric aerosols not classified as smoke
• Large dust storm case
 • Represents a major source of aerosols in the atmosphere
 • Expected over regions where smoke is also common

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.996</td>
</tr>
<tr>
<td>Land</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.996</td>
</tr>
<tr>
<td>Water</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).
Operational Capabilities

- Currently testing new deployment in operational environment
 - Anticipate operational October 2019
- Fully deployed in the cloud using Amazon S3 and Cloud Computing Services
- End-to-end prediction and visualization pipeline
 - Model prediction available ~15 min after data availability
 - Preprocessing ~10 min
 - Prediction and Postprocessing ~5min
 - Full disk GOES observation available ~10 min intervals
Operational Capabilities - Postprocessing

• Spatial grouping of predicted pixels to define plumes
 • Convert predicted pixels to bitmap image
 • Blurring to smoothen edges
 • Contour blurred image to group smoke pixels into plumes
 • Plumes visualized and geojson representation of plume extents available for download in the Phenomena Portal (http://phenomena.surge.sh)
Summary

• Developed end-to-end machine learning smoke detection pipeline for next-generation of geostationary satellites
 • Well curated smoke extent dataset
 • Scalable smoke detection deep learning model, requiring only smoke information, and capable of detecting smoke with:
 • Varying optical thicknesses
 • Over low and high reflectance background surfaces
 • Discriminates from features with spectral similarities
 • Fully automated operational deployment of model in development
 • Plume visualization and extent data accessible in online platform
Future work

• Expand the training data to account for identified weaknesses
 • Low sun angles
 • Thin smoke over arid regions
 • Thin clouds
• Refinement of the machine learning model
 • Confirmation of N=7 as best performing model
 • Explore trade-off between neighborhood size and prediction capabilities
 • Stepwise band selection considering all 16 GOES bands
 • Robust model validation
 • Band exclusion to identify contribution to feature learning
• Performance assessment for operational improvements
Thank you!

mr0051@uah.edu

aaron.kaulfus@nsstc.uah.edu