Electric Sail Propulsion for Deep Space Missions

Les Johnson
Kurt Polzin

NASA
Marshall Space Flight Center
The relative velocity of the Solar Wind through the decades

The solar wind ions traveling at 400-500 km/sec are the naturally occurring (free) energy source that propels an E-Sail
Electrostatic Sail (E-Sail): Operational Principles

- The E-sail consists of 1 to 20 conducting, positively charged, bare wires, each 1–20 km in length.
- Wires are deployed from the main spacecraft bus and the spacecraft rotates to keep wires taut.
- The wires are positively biased to a 6 kV-20 kV potential.
- The electric field surrounding each wire extends ~66 m into the surrounding plasma at 1 AU.
- Positive ions in the solar wind are repulsed by the field created surrounding each wire and thrust is generated.
Electrostatic Sail (E-Sail): Operational Principles

• As the E-sail moves away from the sun and the plasma density decreases (as \(1/r^2\)), the electric field around the wires gradually expands (to 180 m at 5 AU), partially compensating for the lower plasma density by increasing the relative size of the ‘virtual’ sail.
 - The thrust therefore drops only as \(\sim 1/r\), instead of \(1/r^2\)

• An electron gun is used to keep the spacecraft and wires in a high positive potential (~kV).

• Wire length and voltages are mission specific and determine the total \(\Delta V\) available
Velocity vs. Radial Distance
Comparison for Equal Mass Spacecraft

![Graph showing velocity vs. radial distance for Solar Sail and Electric Sail.]
Electrostatic Sail (E-Sail): Operational Principles

Characteristic accelerations of $1 - 2 \text{ mm/sec}^2$

Spacecraft velocities of 10 – 15 AU/year possible (3X -4X faster than Voyager)
Electric Sail Performance

E-Sail propulsion can significantly reduce travel time to 100 AU compared to more conventional propulsion systems.
Plasma Testing was Key to Advancing Knowledge of Space Plasma Physics

• The Phase II experimental testing enabled a ‘knowledge bridge’ to be constructed from the testing performed > 30 years ago on negative biased objects operating in a space environment to recent testing on positive biased objects operating in a similar space environment.

• Phase II experimental results were a combination of:
 - Extensive plasma chamber testing, and
 - Rigorous analysis of data collected on positive biased objects for an appropriate set of dimensionless space plasma parameters under the condition of Debye length $\lambda d < \text{tether diameter}$
 - Normalized Potential (Φ_b)
 - Mach Number (S)
E-Sail Plasma Physics Testing at MSFC
Electric Sail TRL Assessment and Advancement Reports (E-STAAR)

- MSFC Engineering Directorate conducted a TRL assessment of E-Sail systems and components.
- Most components are at relatively high TRL (with flight heritage for other applications – hence lower TRL for this application).

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GN&C / System dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Thrust vector control</td>
<td>3</td>
</tr>
<tr>
<td>Tether Deployment</td>
<td>3</td>
</tr>
<tr>
<td>Plasma Acceleration / Charge Control</td>
<td>3</td>
</tr>
<tr>
<td>High Voltage Switching</td>
<td>3/4</td>
</tr>
<tr>
<td>Electron Emitter</td>
<td>4</td>
</tr>
<tr>
<td>High Voltage Power Supply</td>
<td>4</td>
</tr>
<tr>
<td>New Tether Materials</td>
<td>4/5</td>
</tr>
<tr>
<td>State of Art (SOA) Tethers</td>
<td></td>
</tr>
<tr>
<td>Command, Control & Comm. (NEA Scout Heritage)</td>
<td>7+</td>
</tr>
<tr>
<td>Power Generation</td>
<td>7</td>
</tr>
</tbody>
</table>

* Updated to reflect advancements made resulting from NIAC and MSFC internal funding.
Questions?