Using Advanced Design Methods to Optimize the Mars Ascent Vehicle First Stage Solid Rocket Motor

Robert Hetterich
Advanced Concepts Office
NASA Marshall Space Flight Center
2019 AIAA NextGen Technical Symposium
September 9 – 10, 2019
Huntsville, AL
Agenda

Background

Study Implementation

Optimizer

SPP

Study Results
Background

◆ Mars Ascent Vehicle (MAV):
 ◆ MAV is the portion of the sample return mission which brings the samples from the Martian surface to rendezvous with an orbiter
 ◆ At the time of this study, MAV was trading between hybrid and solid propulsion designs

◆ The MAV solid motor design had last been developed in October, so there was a need to update and improve the motor design
 ◆ This study was carried out under the mentorship of Tim Kibbey, from Marshall’s solid propulsion group

My primary task in this project was to carry out a design study for the MAV first stage SRM
Why does this study require optimization?

- Ultimately, we wanted to minimize the mass of the motor while maximizing its Isp and adhering to any design constraints.
- Because we had conflicting needs and requirements, there was a need to optimize.
- There are several discrete motors that Tim Kibbey wanted to design.
 - Need to carry out a separate optimization for each discrete motor configuration.
We can formulate the overall study goal and the steps to achieve that goal

We use optimization to improve the grain and case design of each motor in a set of first stage Mars Ascent Vehicle (MAV) motor configurations, subject to given constraints.

To accomplish this goal we had to...

1. Parameterize the motor case and grain geometry

2. Define the optimization problem

 Maximize: $\Delta V = g \cdot I_{sp} \cdot \ln \left(1 + \frac{m_{prop}}{m_{inert}} \right)$

 Subject to: max pressure \leq 1000 psi
 propellant mass = target mass
 etc.

3. Wrap the motor simulation (Solid Performance Program - SPP) and run it quickly in an optimizer
However, we found that solving the optimization problem with SPP in the optimization loop proved to be very difficult.

- High problem dimensionality means the opt. can require several thousand SPP calls.
- Large number of runs means that a single optimization can take over half a day with SPP.
- Cannot run many optimizations in a reasonable amount of time (in this study, I had to run over 1000 optimizations).
- Cannot flexibly make changes to the optimization problems and re-run.
- Problems which fail to converge will exacerbate run time issues.

We need a way to speed up the evaluation of parametric motor designs.
For this design study we had to utilize Advanced Design Methods (ADM)

- ADM is very useful for when you have an automated toolset, but cannot feasibly carry out your design study due to long run time of the simulation environment.

Levels 1-3: Choose a toolset, automate the tools, and integrate all of the tools together.

Level 4: Choose, build, and run a design of experiments (DOE) through the automated environment.

Level 5: Use the DOE data to create surrogates (regression of the sim env) which can predict outputs of interest.

Level 6: Carry out ADM. ADM is the process of carrying out a design method with the surrogate models.

With ADM, we can use surrogate models to carry out our optimizations since the surrogates can be evaluated very rapidly compared to the original simulation environment.
We can now apply the ADM process to our study

1. Setup SPP simulation to run in automated batch mode
2. Run a 5,000 point DOE of design variables through the batch environment
3. Regress the opt objectives and constraints as a function of the design variables
4. Verify that the regression models are accurate to an acceptable tolerance
5. Run the optimization using the regression models

About a 1000 times improvement in optimization run time by using regression models while still accurately predicting SPP outputs within an acceptable tolerance
With ADM, we were able to noticeably improve the design of each motor

Output Variable Improvement

<table>
<thead>
<tr>
<th>Variable</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal ΔV Increase</td>
<td>2 %</td>
</tr>
<tr>
<td>Insulation Mass Decrease</td>
<td>35 %</td>
</tr>
<tr>
<td>Total Motor Length Decrease</td>
<td>10 %</td>
</tr>
<tr>
<td>Stage 1 Inert Mass Decrease</td>
<td>7 %</td>
</tr>
<tr>
<td>Isp Increase</td>
<td>1 %</td>
</tr>
</tbody>
</table>
From the suite of optimized motors, Tim Kibbey was able to choose one as the new baseline

- With this optimization design study, I was able to provide Tim Kibbey with over 20 optimized motor configurations to choose from.

- After the optimization study, Tim Kibbey made some additional, small tweaks to the motor design.

- The final motor design which Tim Kibbey ultimately chose from the set of optimized motors was based on:
 1. Purposes of aerodynamic stability
 2. Good performance in 3 DOF trajectory analysis
 3. Favorable boost-sustain profile

<table>
<thead>
<tr>
<th>Output Variable</th>
<th>Change from Original Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal ΔV [m/s]</td>
<td>- 2.15 %</td>
</tr>
<tr>
<td>Insulation Mass [lbm]</td>
<td>- 32.29 %</td>
</tr>
<tr>
<td>Total Motor Length [in]</td>
<td>- 13.29 %</td>
</tr>
<tr>
<td>Stage 1 Inert Mass [lbm]</td>
<td>- 6.89 %</td>
</tr>
<tr>
<td>Isp [sec]</td>
<td>+ 1.08 %</td>
</tr>
</tbody>
</table>
These techniques can be even more powerful when used for multidisciplinary analysis and optimization (MDAO)

- MDAO benefits even more from surrogate speed due to increased number of iterations
- Surrogate models are very portable and easy to integrate

These techniques can also be helpful for us to implement probabilistic design to quantify uncertainty

- Can optimize or design to most probable performance

ADM can also be very useful for design studies outside of single discipline design
Conclusion: We successfully used Advanced Design Methods to optimize the first stage motor design

Study goal: use optimization to improve the grain and case design of each motor in a set of first stage Mars Ascent Vehicle (MAV) motor configurations, subject to given constraints

Using ADM we were able to run an optimization design study to produce a new baseline design for the MAV first stage SRM with an improved length and mass

Use of ADM can further be extended to carry out multidisciplinary analysis / optimization and robust design

Questions?
Additional Information
Defining the Optimization Problem

- With our parameterization of the motor, we can begin to form our optimization problem of interest

Objective: In this study we experimented with two different objectives. First we tried to minimize the total length of the case (to minimize mass of the interstage). Next we tried to maximize the ideal ΔV of the MAV first stage.

Design Variables: Use the previously defined parameterization of the motor as our design variables. The ranges are set such that we expect the optimum point to fall somewhere inside the ranges

- By varying:
 - $0.6 \text{ in} \leq \text{throat radius} \leq 1.0 \text{ in}$
 - $15.0 \text{ in} \leq \text{case cylinder length} \leq 30.0 \text{ in}$
 - $0.5 \leq \text{case dome b over a} \leq 0.999$
 - $3.0 \text{ in} \leq \text{case exit radius} \leq 7.0 \text{ in}$
 - $0.25 \leq \text{grain bore start} \leq 0.60$
 - $1.5 \text{ in} \leq \text{grain bore radius} \leq 5.0 \text{ in}$

- $0.045 \leq \text{grain fin start} \leq 1.0$
- $0.5 \text{ in} \leq \text{grain fin depth} \leq 4.0 \text{ in}$
- $0.1 \text{ in} \leq \text{grain fin half width} \leq 0.5 \text{ in}$
- $0.0 \text{ in} \leq \text{grain aft slot length} \leq 6.0 \text{ in}$
- $4.0 \text{ in} \leq \text{grain aft slot radius} \leq 11.0 \text{ in}$
- $3 \leq \text{grain number of fins} \leq 6$

Constraints: Constraints were provided by Tim as requirements for the motor

- Subject to:
 - maximum head pressure $\leq 1000 \text{ psi}$
 - propellant mass = target mass
 - impulse fraction at 30% time ≥ 0.50
 - grain fin depth + grain bore radius \leq exit radius after applying insulation
 - burn time $\geq 72 \text{ sec}$
 - time below $150 \text{ psi} \leq 12 \text{ sec}$

Minimize: $L_{\text{case}} = L_{\text{cyl}} + R_{\text{cyl}} \frac{b}{a} + R_{\text{cyl}} \frac{b}{a} \sqrt{1 - \left(\frac{R_{\text{exit}}}{R_{\text{cyl}}}\right)^2}$

or

$-\Delta V = -g \cdot I_{sp} \cdot \ln \left(1 + \frac{m_{\text{stage}2}}{m_{\text{case}} + m_{\text{prop}} + m_{\text{insulation}} + m_{\text{other}}} \right)$

Where... $m_{\text{case}} = f \left(R_{\text{cyl}}, L_{\text{cyl}}, \frac{b}{a}, \rho_{\text{case}}, t_{\text{case}} \right)$

$\rho_{\text{case}}, t_{\text{case}}, g, m_{\text{stage}2}, m_{\text{other}} = \text{constants}$

$m_{\text{prop}}, m_{\text{insulation}} = \text{From SPP environment}$

$L_{\text{nozzle}} = 56.97 - L_{\text{case}}$

$I_{sp} = f \left(L_{\text{nozzle}}\right)$

$m_{\text{nozzle}} = f \left(I_{\text{nozzle}}\right)$

$L_{\text{nppc}} = 56.97 - L_{\text{case}}$
Design of Experiments

<table>
<thead>
<tr>
<th>DOE Variables</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Throat radius</td>
<td>0.6 in</td>
<td>1.0 in</td>
</tr>
<tr>
<td>2. Case cylinder length</td>
<td>15 in</td>
<td>30 in</td>
</tr>
<tr>
<td>3. Case cylinder radius</td>
<td>8 in</td>
<td>11 in</td>
</tr>
<tr>
<td>4. Bore start point as percent of case length</td>
<td>25%</td>
<td>60%</td>
</tr>
<tr>
<td>5. Bore radius</td>
<td>1.5 in</td>
<td>5 in</td>
</tr>
<tr>
<td>6. Fin start point as percent of bore length</td>
<td>4.5%</td>
<td>100%</td>
</tr>
<tr>
<td>7. Fin depth</td>
<td>0.5 in</td>
<td>4 in</td>
</tr>
<tr>
<td>8. Fin half width</td>
<td>0.1 in</td>
<td>0.5 in</td>
</tr>
<tr>
<td>9. Aft slot length</td>
<td>0 in</td>
<td>6 in</td>
</tr>
<tr>
<td>10. Aft slot radius</td>
<td>4 in</td>
<td>11 in</td>
</tr>
<tr>
<td>11. Exit radius</td>
<td>3 in</td>
<td>7 in</td>
</tr>
<tr>
<td>12. Case dome b over a</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>13. Number of fins</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>
Few things to consider when choosing a DOE for this study:

- Our SPP simulations are deterministic and have very little noise
- Our design space likely has higher order effects and non-linearities
- Our optimized solution is likely to be on the interior of the design space rather than at the edges

Therefore, for this study we want to use a design of experiments which will spread points over the design space and minimize replication of designs

Chose to use a Latin Hyper Cube (LHC) space filling design

- A LHC aims to maximize the minimum distance between design points, but requires points to be evenly spaced (like the uniform design)
- Good balance between spacing of points and spread of points over the design space
- Can be generated in a reasonable amount of time

Training DOE for this study was built with 5,000 points

- Run points through the batch SPP environment and collect the results for the optimization
- Additional testing DOE was built with 1,000 points and run
After creating the DOE, running the points through the batch SPP environment, and collecting outputs of interest, we can begin creating the surrogate models.

Need to create seven different surrogate models:
- Maximum head pressure
- Propellant mass
- Insulation mass
- Impulse fraction at 30% time
- Exit radius with insulation
- Burn time
- Time below 150 psi

When I am creating surrogate models I generally try to start with the simplest model I can and see if it gives me a good enough fit.
- Continue to increase model complexity and move on to other model types until I reach a fit which I am content with

For this study I ended up having to use **neural networks** for the majority of my models.
For each of the seven surrogate models, we must carry out several checks to make sure that the models fit the data well and that we are not overfitting. For example, we can look at each check I carried out for the burn time surrogate model:

- Check R² & Root Mean Square Error (RMSE)
- Check pattern of model residuals
- Check distribution of model residuals
- Check distribution of test point residuals