Gravity-related Issues in Boiling and Condensation

JSC Perspective

Eugene K. Ungar, Ph. D
Senior Thermal and Fluids Analyst
NASA/Johnson Space Center
October 2019
Problem Statement

• For a flight center, gravity-related issues in boiling and condensation take on a unique perspective

• Flight systems must be
 • highly reliable
 • developed and qualified in a cost effective manner

• Must work in 0-g and partial gravity as applicable
Gravity Effects

Heat transfer regions in convective boiling in a horizontal tube from Collier and Thome (1994)

Heat transfer regions in convective boiling in a vertical tube from Collier and Thome (1994)
Gravity Effects

Condensation in a horizontal tube from Liebenberg and Meyer 2006
0-g System Options

• Full scale testing in 0-g
• Gravity independent systems tested in 1-g
 • small channel surface tension dominated flows
 • high velocity inertia dominated flows
• Scaled testing in 0-g
Gravity Independence

• Surface tension dominance $\text{Bo} < 1$

$$\text{Bo} = \frac{(d/2)^2}{\sigma/[g(\rho_f - \rho_g)]}$$

• where σ is the surface tension of the fluid

• g is the acceleration of gravity

• ρ_f and ρ_g are the liquid and gas phase densities

• $\text{Bo} \leq 1$ means that a vapor bubble growing quasi-statically will completely fill a horizontal liquid-filled tube before growing axially

Gravity Independence

• Inertia dominated flows (high annular) Fr>1

\[Fr = \sqrt{\frac{\rho_g}{(\rho_f-\rho_g)\sqrt{d \ g}}} \frac{u_{sg}}{g} \]

• \(u_{sg} \) is the vapor superficial velocity

Gravity Independence

• Are small Bond number and/or large Froude number sufficient for gravity independence?
 • There will be low quality regions where Froude number is small
 • Bond number will be irrelevant for champagne bubbles

• A good topic for further study
Scaling in 0-g

• Testing full scale systems in 0-g is difficult
• 0-g testing usually requires geometrical scaling and a change in working fluid
• What are the proper scaling parameters?
 • Case can be made to include ρ_f/ρ_g, We_g, Re_f, Re_g, and X, the Martinelli parameter
• A good topic for further study
Partial Gravity Boiling and Condensation

• Scaling is critical
 • Flying experiments on partial-g aircraft almost always involves a fluid substitution
 • Gravity is just another parameter

• What are the proper scaling parameters?
 • Case can be made to include Fr, ρ_f/ρ_g, We₉, Re₉, Re₉, and X

• A good topic for further study
 • Might involve partial-g aircraft experiments for proof

• These should be the last partial-g experiments required
Conclusion

• Development of zero and partial gravity flight systems requires extensive testing

• Zero-g aircraft testing for 0-g systems
 • Safety concerns usually require fluid substitution
 • +/- 0.01 g is a spec, not a guarantee
 • <30 seconds of 0-g time is problematic

• Partial gravity aircraft testing for partial-g systems
 • ~30 seconds of partial time is problematic

• Testing recommendations should come from an understanding of the physics
Backup
1-g Behavior of Bubbles in Vertical Tube

• Bond number is the relevant dimensionless group

\[Bo = \frac{(d/2)^2 g (\rho_f - \rho_g)}{\sigma} \]

• where
 • \(r \) = tube diameter
 • \(g \) = gravitational acceleration
 • \(\rho_f \) = liquid density
 • \(\rho_g \) = vapor density
 • \(\sigma \) = surface tension

• From the literature at Bo<0.84 the liquid/vapor interface would be stable

• For Bo>0.84 counterflow can occur

Motion of Liquid-Vapor Interface in response to Imposed Acceleration,
William J. Masica, Donald A. Petrash, NASA TN D-3005, September 1965