High Speed Testing of a High Efficiency Concentric Magnetic Gear

Justin Scheidler       Zachary Cameron       Thomas Tallerico

NASA Glenn Research Center
Materials and Structures Division
Rotating and Drive Systems Branch

www.nasa.gov
Outline

• Motivation & summary of NASA’s prior work
• NASA’s high efficiency magnetic gear
• Overview of test rig – E-Drives Rig
• Measurements
• Conclusions
Motivation

- Growth of short haul market & emergence of urban air mobility market
  - Enabled by electrified propulsion systems
  - Prevalence of smaller (lower torque) propulsors
- Most concepts use direct drive
- Geared drives are almost always mass optimal

**Direct drive**
- Motor + Simpler
- Fan
- Motor & fan non-optimal

**Geared drive**
- Motor + Optimized motor & fan
- Gearbox + More complex
- Fan
- Potentially less reliable
NASA’s prior work

- **Key conclusions from NASA’s Phase 1 study**
  (understand & improve specific torque)
  - Magnetic performance limited by mechanical features & minimum gap size
  - Concentric magnetic gears are viable, at least for lower torque applications

Performance compared to aerospace gearing

<table>
<thead>
<tr>
<th>Technology</th>
<th>Specific torque, Nm/kg</th>
<th>Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace mechanical gears</td>
<td>55 to &gt;150</td>
<td>98.5 to 99.5</td>
</tr>
<tr>
<td>Magnetic gears</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA PT-1</td>
<td>20</td>
<td>&lt; 98</td>
</tr>
<tr>
<td>NASA PT-2</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

**Technology needs:**

- High precision, dynamic data
- Feasibility of aerospace-grade efficiency
Outline

• Motivation & summary of NASA’s prior work

• NASA’s high efficiency magnetic gear

• Overview of test rig – E-Drives Rig

• Measurements

• Conclusions
NASA’s magnetic gear prototype 3 (PT-3)

**Goal:** Create a high efficiency version of PT-2 (high specific torque gear)

**Application**
- Loosely tailored to X-57

**Design**
- 1 pole pair

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>4.83 : 1</td>
</tr>
<tr>
<td>Power</td>
<td>52.8 kW</td>
</tr>
<tr>
<td>Output speed</td>
<td>4,500 rpm</td>
</tr>
<tr>
<td>Output torque</td>
<td>112 Nm</td>
</tr>
<tr>
<td>Input speed</td>
<td>21,735 rpm</td>
</tr>
<tr>
<td>Input torque</td>
<td>23.2 Nm</td>
</tr>
<tr>
<td>Diameter</td>
<td>158 mm</td>
</tr>
<tr>
<td>Length (w/o shafts)</td>
<td>114 mm</td>
</tr>
</tbody>
</table>

**Prototype**
- 1 pole pair
NASA’s magnetic gear prototype 3 (PT-3)

Features enabling high efficiency

Laminated magnets
**Tradeoff:** reduced torque

Lower loss soft magnetic material (FeCo)
**Tradeoff:** higher cost

Ring gear
Modulator
Sun gear

1 mm
Outline

- Motivation & summary of NASA’s prior work
- NASA’s high efficiency magnetic gear
- **Overview of test rig – E-Drives Rig**
- Measurements
- Conclusions
E-Drives Rig – Overview

**Input** (controlled speed)

- 30 kW
- 40 hp
- 22,000 rpm
- 12 Nm
- 8.9 ft-lb

**Output** (controlled torque)

- 30 kW
- 40 hp
- 15,000 rpm
- 100 Nm
- 73.7 ft-lb

**Measurements:** torque (in/out), speed (in/out), power (in/out), vibration, temperature

**Note:** noted specifications are for continuous operation
E-Drives Rig – Uncertainty Analysis

- Torque uncertainty depends on torque & temperature
- Efficiency uncertainty depends on input speed, output torque, & gear ratio
- At a 95% confidence level, can often measure…
  
  Torque to better than ±0.03%
  Power to better than ±0.2%
  Efficiency to better than ±0.3%

From measured torques & speeds

Efficiency uncertainty (%)
(for gear ratio 4.83 : 1, torque transducer 10 C above its calibration temperature)

From measured powers
Outline

- Motivation & summary of NASA’s prior work
- NASA’s high efficiency magnetic gear
- Overview of test rig – E-Drives Rig
  - Measurements
- Conclusions
Measurements – PT-3 (High Efficiency)

Output side
(high torque)

Input side
(low torque)

Torque reaction structure
(does not constrain radial or axial position)
Measurements – PT-3 (High Efficiency)

4.83 : 1 reduction ratio

20.8 rpm

100 rpm
Test matrix - PT-3 testing round 2

PT-3 maximum torque = 112 Nm

PT-3 continuous operating torque = 85% * 112 Nm

Accessible operating space

Accessible after balancing a coupling

Designed speed limit of PT-3

Dyno limit
Motor limit at dyno (GR = 4.83)
Test matrix
Tare loss correction

- Measured power loss includes contributions from the rig itself
  - E-Drives Rig’s bearing housings and 2 couplings are located between the torque transducers
- Tare loss vs. speed measured when prototype replaced by straight shaft
  - Limited to 5,000 rpm by vibration

\[ P_{\text{loss}} = \omega (0.5\mu Ld) \]
\[ \omega = \text{rotational speed in rad/s} \]
\[ \mu = \text{coefficient of friction} = 0.002 \text{ (angular contact, non-contact seal)} \]
\[ L = \text{dynamic load rating} = 7.4 \text{ kN} \]
\[ d = \text{bearing bore diameter} = 25 \text{ mm} \]
Tare loss correction

Power loss of prototype

\[ P_{\text{in}} - P_{\text{out}} - \frac{1}{2} \left( 0.0018 \frac{RPM_{\text{in}}}{2}^{1.1684} \right) - \frac{1}{2} \left( 0.0018 \frac{RPM_{\text{out}}}{2}^{1.1684} \right) \]

- Tare loss, input side
- Tare loss, output side

need to extrapolate measured tare loss for this

- Assume measured tare loss on input & output sides are equal
PT-3 Power loss – effect of torque

- Power loss is independent of torque
  - Important for efficiency modeling
  - Allows accurate extrapolation of data to higher torques

Note: data from PT-3 testing round 1
PT-3 Power loss – measured and predicted

- Electromagnetic losses dominate
- Predicted total loss is reasonably accurate over tested range, but will deviate as speed increases
PT-3 Power loss – extrapolation

- Power loss fit by equation commonly used to describe electromagnetic losses – used to extrapolate loss to higher speeds

- Power loss fit well, but small errors can lead to appreciable efficiency errors at lower torque

![Power loss fit](image1)

![Prediction vs measured](image2)
PT-3 Efficiency map – measured data only

- Efficiency increases as torque increases & speed decreases
- Efficiency over 98.7% measured
PT-3 Efficiency map – measured data & extrapolation

- Extrapolated efficiency exceeds 99.5% at low speeds
- > 99% efficiency up to about 5,000 rpm input speed; ~97% efficiency at max operating torque & speed
PT-3 torque ripple

0.3% to 2% of max input torque

0.2% to 1% of max output torque
Outline

• Motivation & summary of NASA’s prior work
• NASA’s high efficiency magnetic gear
• Overview of test rig – E-Drives Rig
• Measurements
• Conclusions
Conclusions

- **E-Drives Rig**
  - Measurements can be used to confidently calculate efficiencies up to 99.7% for most tests

- **Power loss in magnetic gears**
  - Can extrapolate power loss & efficiency to higher torque with high accuracy and to higher speed with moderate accuracy

- **PT-3 efficiency**
  - Laminated permanent magnets enable high efficiency, but reduce torque
    - > 99% up to input speeds of 5,000 rpm
    - ~97% at max operating speed

- **PT-3 torque ripple**
  - RMS ripple 0.2% to 2% of max torque

**Future work**

- Measure efficiency, torque ripple, & dynamic response to torque overload of PT-3, PT-4, & PT-5 after reducing unbalance in the rig & installing a new dyno and new measurement hardware
- Evaluate the manufacture & benefits of *magnetically-geared motors*, with emphasis on improving drivetrain reliability
Acknowledgements

• NASA Revolutionary Vertical Lift Technology (RVLT) Project
• NASA Internal Research & Development Project
• Vivake Asnani – NASA Glenn Research Center