Predictive Thermal Control (PTC) Technology to enable Thermally Stable Telescopes:

First Two Year Status

H. Philip Stahl
Michael Effinger
Thomas Brooks
NASA Marshall Space Flight Center

Gary Kuan
Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA 91109
Motivation

Exoplanet science mission concepts require **ultra-stable**
telescopes for **multiple hours** exposures.

Predictive Thermal Control Study (PTCS) matures technology to
enable active thermal controlled telescopes required to make
ultra-high contrast observations of exoplanets.

History

PTCS started as a 4 year Strategic Astrophysics Technology
(SAT) project initiated in FY17 and was converted into an
Astrophysics Directed Work project.
Predictive Thermal Control (PTC)

- PTC’s goal is to develop an active thermal control technology that can keep mirrors at a constant temperature (< 10 mK) regardless of where the telescope points on the sky.
- PTC does this by placing a physics-based Model Predictive Control (MPC) logic in the control loop to determine control variables (heater power levels) based upon state variables (temperature measurements).
 - MPC uses sensors to measure the temperature distribution on the optic to estimate temperatures at unmeasured locations and determine the resulting heating profile needed to produce the desired temperature profile.
 - MPC uses sensors on the outer barrel and attitude knowledge to determine the telescope’s external thermal load changes (because of a slew or roll relative to the sun) and modifies the amplitude of the enclosure’s zonal heaters to compensate.
PTCS has 3 objectives for maturing Thermally Stable Telescope technology

1. **Validate model** that predicts thermal optical performance of mirror assembly based on structural design and material properties, i.e. CTE distribution, thermal conductivity, mass, etc.

2. **Derive thermal stability specifications** from wavefront stability requirement.

3. **Demonstrate** use of PTC to achieve thermal stability.
PTCS has a detailed technical plan with 5 quantifiable milestones:

1. Develop a high-fidelity **model of 1.5m ULE® AMTD-2 mirror with measured CTE distribution, and reflective coating.**

2. **Derive specifications** for thermal control system for wavefront stability.

3. **Design and build a predictive Thermal Control System** for a 1.5m ULE® AMTD-2 mirror that senses temperature changes and actively controls the mirror’s thermal environment.

4. **Validate model** by testing 1.5-m class ULE® AMTD-2 mirror in a relevant thermal vacuum environment at X-ray and Cryogenic Facility (XRCF).

5. Use validated model to **perform Trade Studies** to optimize primary mirror thermo-optical performance as a function of mirror design, material selection, material properties (i.e., CTE) mass, etc.
Status

MS#1: Created a high-fidelity ‘as-built’ FEM of 1.5-m AMTD-2 ULE® mirror including CTE distribution.

MS#2: Derived thermal control specification for HabEx baseline telescope

MS#3: Harris Corp built and delivered a 37-zone actively controlled thermal enclosure for a 1.5m ULE® AMTD-2 mirror.

MS#4: Modified the XRCF to enable lateral and axial thermal gradient testing of mirror systems.

MS#4: Adding control hardware and software to implement PTC with XRCF thermal environment and Harris thermal enclosure.

MS#4: Procuring a 1.2m aluminum mirror for preliminary tests.

MS#5: Design primary mirror for HabEx baseline telescope.
Future Work

Test PTC control-logic in MSFC XRCF on:

- 1.2-m aluminum pathfinder mirror
- 1.5-m ULE® AMTD-2 mirror

Correlate measured test results with predicted performance.
Objective #1

Validate model that predicts thermal optical performance of mirror assembly based on structural design and material properties, i.e. CTE distribution, thermal conductivity, mass, etc.

Milestones #1 and #4 support Objective #1

- Milestone #1 creates the high-fidelity model
- Milestone #4 validates the model
Milestone #1 Status

Develop a high-fidelity traceable model of 1.5m ULE® AMTD-2 mirror, including 3D CTE distribution and reflective coating, that predicts its optical performance.

- **DONE:** Created high-Fidelity ‘as-built’ model using MSFC x-ray computed tomography data imported into NASTRAN and Corning CTE boule data provided by Harris Corp (i.e. where each of the 18 core elements was cut from its boule and the location of that core element in the AMTD-2 mirror).
Milestone #4 Status

Validate model by testing 1.5-m class ULE® mirror in a relevant thermal vacuum environment in the MSFC X-ray and Cryogenic Facility (XRCF) test facility.

- **DONE**: Designed and installed Solar Simulator and Cold Plate to XRCF test Capability.
- **DONE**: Test bare 1.5-m ULE® AMTD mirror (no PTC system) in XRCF at thermal soak temperature and with thermal gradient imposed by solar simulator lamps.
- **DONE**: Correlating high-fidelity model with ‘as-measured’ static cryo-deformation data.
- **DONE**: Correlating high-fidelity model with ‘as-measured’ static thermal gradient data.

2019 Mirror Technology Days Workshop
XRCF PTC test configuration

Add ability to induce axial and lateral thermal gradients onto mirror under test.

• Lateral gradient with solar lamp array.
• Axial gradient with forward cold plate.

Solar lamp array consists of 24 lamps connected in a 3-phase delta configuration (8 per phase).

Stands designed and fabricated to provide a variety of coverage areas (i.e. 6x4, 3x8 and 2x12 etc.)

Controllable from 0 to 100% power.
Harris 1.5m ULE® AMTD-2 Mirror

Diameter: 1.5m
ROC: 3.5m
Mass: ~50kg
Tested ULE® AMTD-2 Mirror to 250K
Model correlation to measured data (293K – 231K)

Measured = 28.8nm rms
Model = 17.7nm rms
Residual error = 22.8nm rms

- **Initial Model** includes:
 - prying force due to aluminum frame, mount & bond pads.
 - “as-built” structure & CTE.

- **Residual error** attributed to ULE® CTE inhomogeneity.
CTE Correlation to Measured Data

Measured SFE Change minus mount effects
RMS SFE = 22.8 nm

Correlated Model’s Inhomogeneity Effect
RMS SFE = 22.4 nm

Test data minus correlated effects
RMS SFE = 4.4 nm

Correlated Map was produced by introducing lateral strain difference between front/back sheets.
Predicted vs Measured Cryo-Deformation

Revised Model for Thermal Soak of 293K to 231K

Measured 28.8 nm rms

Predicted 24.7 nm rms

Difference 13.4 nm rms
High-Fidelity Model

High-fidelity model predicted cryo-deformation based on mounting to aluminum backplane and CTE mapping.

Predicted Mount Deformation 18.9 nm rms

Predicted CTE Deformation 16.6 nm rms
Thermal Gradient Test

To further validate high-fidelity model, measured 1.5-m ULE® AMTD-2 mirror’s response to a static lateral thermal gradient imposed by solar lamps.
Thermal Gradient Test

Calculated Temperature Gradient
\[\Delta T = 87.7 \text{K} \]

Measured Deformation
78.5 nm rms

Correlated Deformation requires
81 ppb/K CTE

Instantaneous bulk CTE of ULE® changes by ~ 80 ppb/K from 20C to 100C.
Objective #2

Derive thermal stability specifications from wavefront stability requirement.

Milestones #2 and #5 support Objective #2 (Derive Specifications)
Derive thermal control system specifications for stable wavefront

DONE: HabEx program has provided tolerances for wavefront stability as a function of Zernike polynomial for the Vector Vortex Coronagraph.

- **Specification depends on spatial frequency & coronagraph:**
 - Low-Order < 0.5 nm rms per update cycle
 - Mid-Spatial Frequency < 0.002 nm rms per update cycle

- **Required Thermal Control depends on:**
 - Mirror Thermal Sensitivity: picometers/mK
 - Temporal Update Cycle: 10 or 20 minutes
 - Thermal Controllability: 1 or 10 or 50 mK
WFE Stability Error Budget

• Derive Tolerance for Zernike polynomials
• Sensitivities per Zernike are Fixed by Coronagraph
• Allocation Adjusted to ‘balance’ errors

VVC-6 is insensitive to Tip/Tilt, Power, Astig, Coma & Spherical

Trefoil is most important
Milestone #5 Status

Use a validated model to perform trade studies to determine how thermo-optical performance can be optimized as a function of mirror design, material selection, mass, etc.

• **DONE:** Preliminary trade studies conducted including initial assessment of HabEx Baseline Design
Thermal Stability Study

• Biggest drivers for thermal stability are heat capacity and CTE
 – If all factors are constant, CTE determines error amplitude.
 – Heat Capacity determines how fast mirror responds (or does not respond) in an actively controlled thermal environment.

\[
\frac{dL}{dt} = \frac{(CTE)L}{\rho V c_p} \frac{dQ}{dt}
\]

• Proposed Figures of Merit for thermally actively control mirror:
 – Massive Active Opto-Thermal Stability: \(MAOS=(\rho c_p)/CTE \)
 – Active Opto-Thermal Stability: \(AOS=c_p/CTE \)
Thermal Stability

- Key to achieving Stability is control period and sensitivity.
- The less sensitive or ‘noisy’ the control system the faster the required control period.
- Control faster than the mirror can respond to the noise.

Curve follows the function:

\[T = \frac{\gamma}{\alpha C} \]

Where:
- \(T \) is the shroud control period
- \(C \) is the shroud controllability
- \(\gamma \) is the maximum RMS WFE Range (10pm)
- \(\alpha \) depends upon the telescope design (0.0020 nm/(mK·s) for the analyzed telescope)

3-sigma Test Results, 165.00, 8.00
STOP Model

PTC/HabEx Study Team

• Designed 4-m Zerodur mirror for HabEx baseline telescope.

• Created high-fidelity model to perform STOP analysis
 – Thermal Desktop model has 20K elements and calculates telescope’s structure and mirror temperature distribution at 10K node.
 – Temperature distribution is mapped into NASTRAN FEM and deflections calculated using each nodes CTE.
 – Rigid body motions and surface deformations calculated from NASTRAN deflections using SigFit.

for various Design Reference Missions (DRM):

2019 Mirror Technology Days Workshop
Predicted LOS Stability: Thermal Drift

Thermal drift was calculated by modeling the telescope structure’s response to a 250-hr DRM.

Drift is the ‘residual’ the rigid-body motion of the primary and secondary mirrors relative to the tertiary mirror that is not corrected by the laser metrology system that senses and controls the optical alignment of the primary and secondary mirrors.
Predicted LOS Stability: Thermal Drift

Thermal Drift is ‘residual’ rigid-body motion of primary and secondary mirrors not corrected by laser metrology system.

Total rigid-body motion yields < 0.2 mas drift (12.5X margin)

Table 7: Predicted maximum rigid body motion of PM and SM for a Design Reference Mission

<table>
<thead>
<tr>
<th>DOF</th>
<th>Δx (nm)</th>
<th>Δy (nm)</th>
<th>Δz (nm)</th>
<th>Θx (nrad)</th>
<th>Θy (nrad)</th>
<th>Θz (nrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>0.71</td>
<td>0.48</td>
<td>0.05</td>
<td>0.25</td>
<td>0.38</td>
<td>0.39</td>
</tr>
<tr>
<td>Secondary</td>
<td>0.07</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Residual Thermal Drift = Total LOS Instability
Wavefront Stability: Thermal

Thermal WFE instability occurs when PM temperature changes. PM CTE homogeneity produces a temperature dependent WFE. Thermal WFE instability as a function of time was calculated using Thermal Desktop, NASTRAN and SigFit.

Symmetric errors change with pitch angle
Asymmetric errors change with roll.
SM is insensitive to roll.
Wavefront Stability: Thermal

Total DRM wavefront error was calculated by RSSing the primary and secondary mirror Zernike terms as a function of time and selecting the maximum amplitude for each.

Trefoil is a problem, but reallocated provides 4X margin.

And, additional margin can be obtained by adding passive or active vibration isolation – to reduce those errors.

Please note: Thermal STOP analysis pipeline does not evaluate as many of the higher order Zernike terms as the Opto-Mechanical STOP analysis pipeline.
Objective #3

Demonstrate use of PTC to achieve thermal stability.

Milestone #3 supports Objective #3 (Demonstration)
Design and build predictive Thermal Control System for 1.5m ULE® mirror with components that sense temperature changes at ~1mK level and actively control mirror’s thermal environment at ~20mK level.

- **DONE:** Designed PTC system and procured components.
- **DONE:** Harris Corp delivered Zonal Thermal Enclosure.
- **IN-PROCESS:** Integrate MSFC and Harris components of PTC system.
- **IN PROCESS:** Procuring a 1.2-m Aluminum Test Mirror
- **IN PROCESS:** Correlating ‘preliminary’ data with model
Multi-Zone Thermal Enclosure for 1.5m AMTD ULE® mirror

SLI encloses struts - open to warm side=0.05

Heaters on hex structure

Heater back Radiates to cold enclosure thru SLI, e=0.05

Bathtub designed with 50% SLI coverage (e=0.50 in model)

Mirror Radiation e=0.05; ID, OD, back e=0.8

2019 Mirror Technology Days Workshop
Thermal Enclosure zonal heaters are designed to ‘compensate’ for environmental induced gradients by actively producing radial, axial and diametric thermal gradients in the mirror.
STOP analysis predicts that when the 1.5-m ULE® mirror is integrated into the thermal enclosure, it will only experience a 7.5 nm rms figure change.

Thus, PTC procured a 1.2-m aluminum mirror to serve as a pathfinder test article. Since aluminum has a larger CTE than ULE®, it is expected to provide a 2X larger signature – which can be used to practice the PTC control algorithm.
Aluminum Test Mirror

Mirror struts/mounts are design to fit PTC Thermal Enclosure

For testing, MSFC will diamond turn as spherical surface.

Additionally, MSFC plans to cryo-null figure mirror as a technology demonstrator for a potential Far-Infrared Mission such as Origins Space Telescope.
Milestone #4 Future Work

Validate model by testing 1.5-m class ULE® mirror in a relevant thermal vacuum environment in the MSFC X-ray and Cryogenic Facility (XRCF) test facility.

- **FUTURE:** Test 1.2m Aluminum ‘test mirror’ and 1.5m ULE® AMTD mirror with rear PTC system.

- **FUTURE:** Conduct test with 1.2m Aluminum mirror, and 1.5m ULE® mirror.

- **OPTIONAL:** Test other mirrors in XRCF/PTC configuration.
Passive Thermal Test

• Initial Conditions:
 — Mirror starts at steady state of ~270K.
 — Environment starts at temperature (T_E) of ~ 220K.

• Passive Response to Thermal Load Change:
 — Increase heat lamp power (Q_H) at $T=5$
 — Keep thermal enclosure at power (Q_B)
 — Monitor mirror surface figure.

2019 Mirror Technology Days Workshop
Active Thermal Test

• Initial Conditions:
 — Mirror starts at steady state of ~270K.
 — Environment starts at temperature \(T_E \) of ~ 220K.

• Active Control of Thermal Load Change:
 — Increase heat lamp power \(Q_H \) at \(T=5 \)
 — Reduce thermal enclosure power \(Q_B \) to compensate
 — Monitor mirror surface figure.

![Graph showing temperatures and powers over time]
Conclusion

PTCS uses Science-Driven Systems Engineering methodology to mature technology for thermally stable telescopes.

PTCS has three objectives:

1. Validate models that predict thermal optical performance of real mirrors and structure based on their structural designs and constituent material properties, i.e. coefficient of thermal expansion (CTE) distribution, thermal conductivity, thermal mass, etc.
2. Derive thermal system stability specifications from wavefront stability requirement.
3. Demonstrate utility of a Predictive Control thermal system for achieving thermal stability.

Predictive thermal control has the potential to solve the thermal stability problem for exoplanet searching telescopes and will be tested on flight traceable hardware to determine its efficacy.

PTCS has made significant progress on its 5 Milestones in 2018.