Enabling Solar Thermal Propulsion with Computational Materials Design

Justin Haskins,¹ Lauren Abbott,² Piyas Chowdhury,² William Tucker,² Charles Bauschlicher,¹ Donald Ellerby³

¹Thermal Protection Materials Branch, NASA Ames Research Center
²AMA, Inc., Thermal Protection Materials Branch, NASA Ames Research Center
³Entry Systems and Vehicles Development Branch, NASA Ames Research Center

1. Background and Challenge

Solar thermal propulsion (STP) promises high specific impulse (1200 s) for missions to the interstellar medium (5x faster than Voyager):
- \(\text{H}_2 \) propellant heated up to 3500 K during close Solar approach
- Heat exchanger (HX) must survive 5 hours in hot \(\text{H}_2 \)
- Baseline uses refractory coatings to protect a carbon/carbon HX

2. Key Objectives

Use **multiscale computational techniques** to inform coating material and design by characterizing:
- Surface reactions and erosion
- Mechanical response and fracture during operation
- Integrated material response during operation

3. Coating Surface Reaction

Tungsten Case Study: Erosion occurs through surface reactions with hydrogen propellant.

- **Direct erosion**
 - Perfect surface
 - Pitted surface
 - At 2500 K: 7,500,000 times more likely than direct erosion

- **H-assisted**
 - At 2500 K: 35,000 times more likely than direct erosion

Methods include thermodynamics from quantum simulations.

4. Coating Mechanical Response and Fracture

Tungsten Case Study: Grains govern balance between plastic deformation and cracking.

5. Comparison with Heritage Operational Data

NERVA Case Study: Model observed mid-range corrosion of ZrC in hot \(\text{H}_2 \) channels to understand origins.

Erosion maximum due to carbon loss from cracks, minima are coating erosion.

6. Engagement and Forward Work

Engaged with development efforts for:
- **STP coating material selection** with JPL
- **Nuclear thermal propulsion** coatings and fuel materials material response with MSFC

Future work: Predictive modeling of fracture/crack density