Physics-Based Modeling and Simulation of Emerging Battery Technologies for Aerospace

Mohit Mehta and John Lawson
Presentation date: 08/21/2019

1. Batteries for Aviation
2. Batteries for Space

Courtesy NASA/JPL-Caltech
Introduction to modeling and simulation

Aerospace Battery Requirements

Major requirement is: High Energy Density

Other requirements are rechargeable, safety, power, recharge time, cost, etc.

- **Li Ion Technology**
- **“Beyond Li Ion”**

- **Hybrid Aviation**
- **Green Aviation**

Energy Density (Wh/kg):
- Li Ion Technology: 180 - 300
 - SOA Limit
 - Outcome: NT
- “Beyond Li Ion”:
 - Gen. Aviation: 400 - 500
 - Outcome: MT
 - Regional Jets: 750
 - Outcome: FT
 - All Size Aircraft: 750+

Green Aviation

Beyond Li Ion

Aerospace Battery Requirements

2
Batteries for Aviation (exploring Li-O₂)

Discharge:
Li → Li⁺ + e⁻

Li⁺ + e⁻ → Li

2Li⁺ + O₂ + 2e⁻ → Li₂O₂(s) ↓

Charge:
Li₂O₂(s) → 2Li⁺ + 2e⁻ + O₂ ↑
Modeling a lithium-oxygen battery

$$V_{\text{discharge}} = j_{\text{dis}} \delta_{\text{Li}_2\text{O}_2} \rho_{\text{Li}_2\text{O}_2} \exp \left(\alpha_{j_{\text{dis}}} \frac{-\delta_{\text{Li}_2\text{O}_2}}{10\text{nm}} \right)$$

Reaction rate

$$R_C = n F c_{\text{O}_2} k_0 a \left(e^{\frac{(1-\phi)\eta}{V_T}} - e^{-\frac{\eta g}{V_T}} \right)$$

Oxygen dissolution

$$c_{\text{O}_2}(L_c) = N_0 \text{O}_2 = k_f [p_{\text{O}_2} - k_H c_{\text{O}_2}(0)]$$

Over-voltage thermodynamic

$$\eta = \phi_{\text{Li}} - \phi - E^0 - V_{\text{discharge}}$$

-\(I\) (electron current)

$$\nabla \cdot (\sigma_{\text{eff}} \nabla \phi) + R_C = a C_d \frac{\partial (\phi - \phi_{\text{Li}})}{\partial t}$$

-\(I_{\text{Li}}\) (electrolyte current)

$$\nabla \cdot (\kappa_{\text{eff}} \nabla \phi_{\text{Li}} + \kappa_D \nabla \ln c_{\text{Li}}) - R_C = a C_d \frac{\partial (\phi - \phi_{\text{Li}})}{\partial t}$$

-\(I_{\text{Li}}\) (electrolyte diffusion flux)

$$\frac{\partial (\epsilon c_{\text{Li}})}{\partial t} = \nabla \cdot (D_{\text{Li},\text{eff}} \nabla c_{\text{Li}}) - \frac{1 - t^+}{F} R_C - \frac{I_{\text{Li}} \cdot \nabla t^+}{F}$$

-\(I_{\text{O}_2}\) (\text{O}_2 diffusion flux)

$$\frac{\partial (\epsilon c_{\text{O}_2})}{\partial t} = \nabla \cdot (D_{\text{O}_2,\text{eff}} \nabla c_{\text{O}_2}) - \frac{R_C}{n F}$$

\(\epsilon\) (porosity change - from \text{Li}_2\text{O}_2 deposition)

$$\frac{\partial \epsilon}{\partial t} = -R_C \frac{M_{\text{discharge}}}{n F \rho_{\text{m, discharge}}}$$
Model calibration for simulating high current

Model calibration

MD Simulations
Electrolyte

Experiments
Kinetics

Model Verification

Simulating cells for high power cell needs accurate electrolyte properties and current dependent kinetics

Mehta et. al. in preparation, 2019
Electrochemical mass distribution

Cell mass distribution

- Cathode: 36%
- Separator: 11%
- Anode: 53%

Mass distribution separated into solid and liquid phases

- Carbon: 1.8%
- Steel Mesh: 23.3%
- Binder: 11.2%
- 1M LiTFSI in DME: 50.6%
- Glass fiber: 3.6%
- Li Foil: 9.6%

All three components of Li-O₂ cell can be optimized to achieve high specific power

Mehta et al. in preparation, 2019
Polarization test: The effect on power

Operating at “high” current densities can lead to 25% power loss during 1hr discharge

Mehta et. al. in preparation, 2019
Polarization test: Oxygen Partial Pressure

Increasing oxygen partial pressure improves power as well as non-electrochemical mass.

Mehta et. al. in preparation, 2019
Influence of separator on performance

Separator does not contribute to battery performance at high current densities

Mehta et. al. in preparation, 2019
Effect of cathode thickness on performance

Optimal cathode thickness depends on operation conditions

Mehta et. al. in preparation, 2019
Influence of microstructure on performance

Optimal values for porosity, particle size, and tortuosity depend on discharge current density and discharge time

$\varepsilon_{\text{eff}} = \varepsilon^{1+\tau}$

Mehta et. al. in preparation, 2019
Influence of electrolyte properties

Diffusion requirements can be relaxed based by changing operating partial pressure and choosing lower salt concentration
Simulation-based optimization (30 min.)

- 1. 0.3M LiTFSI P$_{13}$FSI
- 2. 0.3M LiTFSI P$_{13}$TFSI
- 3. 0.1M LiTFSI TEGDME
- 4. 0.3M LiTFSI P$_{14}$TFSI
- 5. 1M LiTFSI DME
- 6. 0.1 TEAP DMF

The oxygen diffusion length (under steady-state) determines cathode thickness and cathode mass.

```
Thin and optimized cathodes, and better oxygen transport electrolytes can provide Li-O$_2$ for high-specific power cells
```

Mehta *et. al.* in preparation, 2019
Pack level simulation (better optimization)

Active cathode design shows performance improvement but at a power cost of 5-30% for running external systems

Mehta et. al. in preparation, 2019
Pack level simulation (better optimization)

- Unoptimized cathode
- Unused cathode

Usable cathode

Usable area improves

Better cathode utilization improves discharge time at high current 30x

Mehta et. al. in preparation, 2019
Batteries for Space (Motivation)

MARS FACTS / ATMOSPHERE

78% NITROGEN
21% OXYGEN
1% OTHER

96% CARBON DIOXIDE
<2% ARGON
<2% NITROGEN
<1% OTHER

mars.nasa.gov

#JOURNEYTOMARS

Courtesy NASA/JPL-Caltech
Requirements for “Space” Batteries

Operating Temperature: -170°C – 200°C

Specific Energy (Reversible): > 500 Wh/Kg

Extremely Low Self-discharge (0-volt)

Battery System needs to be low mass and volume

Current systems need temperature regulation for optimal performance

Batteries need to be Safe and Reliable
Emerging Battery Technologies for Space

Li-CO₂ Battery:

Solvent-in-Salt Battery

Solid-State Battery:

Anode

Cathode

very-high concentration electrolyte

Solid coating electrolyte
Utilizing **Venus** and **Mars** atmosphere

Li-CO₂ Battery:

\[4 \text{Li}^+ + 3 \text{CO}_2 + 4 \text{e}^- \rightarrow 2 \text{Li}_2\text{CO}_3 + \text{C} \quad (E^\circ = 2.8 \text{ V}) \]
\[4 \text{Li}^+ + \text{CO}_2 + 4 \text{e}^- \rightarrow 2 \text{Li}_2\text{O} + \text{C} \quad (E^\circ = 1.89 \text{ V}) \]

Modeling Framework identical to Li-O₂

- OCV similar to Li-O₂ chemistry
- The reaction pathway changes below 1.89V
- Lithium Carbonate is more insulating than Li₂O₂
- The kinetics are facile than Li-O₂
Modeling similarities with Li-O$_2$ chemistry

Morphology of Discharge product

Particle deposition

Film deposition

Polymer Electrolytes (CO$_2$)

Liquid Electrolytes (CO$_2$)

Low current density (O$_2$)

High current density (O$_2$)

Electrolyte Transport

Different Solubility: 125mM (CO$_2$) > 2mM (O$_2$)

Similar Diffusivity: 10^{-5} cm2/s (CO$_2$) $\approx 2 \times 10^{-5}$ cm2/s

Summary

1. **Batteries for Aviation**
 - Physics-based models can guide cell and pack designs for aviation batteries
 - Both current density and cell mass needs to be optimized for high specific power
 - Optimal cell design changes based on discharge time, discharge current density, and operating conditions

2. **Batteries for Space**
 - Physics-based models for emerging chemistries need to be developed
 - Models on Li-O$_2$ can be ported to simulate Li-CO$_2$ batteries for Mars and Venus
Acknowledgements

NASA Glenn Research Center
William Bennett
Donald Dornbusch
James Wu
Vadim Lvovich
Rocco Viggiano

NASA Ames Research Center
Justin Haskins
Balachandran Gadaguntla Radhakrishnan
Charles Bauschlicher
John Lawson
Lauren Abbott

UC Berkeley
Kristian Knudsen
Pedro Arrechea
Brian McCloskey

"We’ll continue work to make flight even safer … to make it quieter … and through a healthy investment in aeronautics, we’ll reach new heights in pursuit of making it cleaner and greener."
- NASA Administrator Charles Bolden

Funding

NASA Aeronautics Research Mission Directorate (ARMD) Convergent Aeronautics Solutions (CAS) Project, LiON (Lithium-Oxygen batteries for NASA) sub-project.