Status of NASA Research on Projectile Shape Effects-CFRP Impact Experiments

J. Millera,b, E. Christiansenc, J. Hydeb

aUniversity of Texas at El Paso, 500 W. University Blvd., El Paso, TX 79968
bJacobs, NASA Johnson Space Center, Houston, TX 77058
cNASA Johnson Space Center, Houston, TX 77058

19 NOV 2019
Orbital debris fragment shape study

- Efforts have continued in expanding the understanding of the implications of shaped CFRP materials.
- Impact experiments have been performed for validation data of numerical simulation models.
 - Multiple Length to Diameter L:D ratios have been considered
 - For each general L:D ratio an aluminum Whipple shield with an external thermal blanket have been bracketed (obtained a pass and fail for the considered shield)
 - Diagnostics have been developed to determine the orientation of projectile at impact
- Numerical simulations compare well with obtained experimental data.
CFRP is a major debris component of a modern satellite break-up.
CFRP is the principal component of untrackable debris from a modern satellite break-up.
Impact experiments used a realistic Whipple shield with an external, thermal-blanket.
HITF19206 considered an L:D of 1:5 projectile with a diameter of 8 mm
Orthogonal videocameras have been used to determine the projectiles orientation at impact.

\[\alpha[\phi, \psi] = \arccos \left(\sqrt{1 + \tan[\phi]^2 + \tan[\psi]^2} \right) \]
The experimental data is collected to assist in validation of numerical simulations.

Impact: -2 μs to 28.5 μs

Simulation: 0 μs to 30 μs
Comparison of the HITF19206 rear wall from experiment and simulation

Rear wall from HITF19206

Simulated rear wall damage for HITF19206
HITF19210 considered an L:D of 1:2.5 projectile with a diameter of 4 mm
Comparison of the HITF19210 rear wall from experiment and simulation

Rear wall from HITF19210

Simulated rear wall damage for HITF19206
HITF19191 considered an L:D of 2:3 projectile with a diameter of 5 mm
Comparison of the HITF19191 rear wall from experiment and simulation

Rear wall from HITF19191

Simulated rear wall damage for HITF19191
HITF19201 considered an L:D of 2:3 projectile with a diameter of 3.45 mm
Comparison of the HITF19201 rear wall from experiment and simulation

Rear wall from HITF19201

Simulated rear wall damage for HITF19201
HITF19196 considered an L:D of 3:1 projectile with a diameter of 2.5 mm
Comparison of the HITF19196 rear wall from experiment and simulation

Rear wall from HITF19196

Simulated rear wall damage for HITF19196
HITF19204 considered an L:D of 3:1 projectile with a diameter of 1.75 mm
Comparison of the HITF19204 rear wall from experiment and simulation

Rear wall from HITF19204

Simulated rear wall damage for HITF19204
• Continue to cross-evaluate numerical simulations and obtained data for model effectiveness.

• Tighten some of the open questions from the first round of testing and then expand materials.
 – Add data on some of the configurations into the Whipple shield with an external thermal blanket and work to improve some of the projectile launch and flight characteristics
 – Consider other shields of importance to ISS and Artemis

• Develop obliquity models and improve models to include impact speed.
Material that covers additional shots

BACKUP SLIDES
Eleven impact experiments have been performed with CFRP projectiles

<table>
<thead>
<tr>
<th>HITF Number</th>
<th>Projectile Length (mm)</th>
<th>Projectile Diameter (mm)</th>
<th>Projectile L/D</th>
<th>Projectile Mass (g)</th>
<th>Impact Speed (km/s)</th>
<th>Impact Angle (°)</th>
<th>Attack Angle (°)</th>
<th>Critical Length (mm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HITF19191</td>
<td>3.3</td>
<td>5.0</td>
<td>0.66</td>
<td>0.1007</td>
<td>6.94</td>
<td>0</td>
<td>13.1</td>
<td>2.56</td>
<td>Fail</td>
</tr>
<tr>
<td>HITF19192</td>
<td>3.3</td>
<td>5.0</td>
<td>0.66</td>
<td>0.1002</td>
<td>6.99</td>
<td>0</td>
<td>24.7</td>
<td>2.51</td>
<td>Fail</td>
</tr>
<tr>
<td>HITF19193</td>
<td>3.3</td>
<td>5.0</td>
<td>0.66</td>
<td>0.0999</td>
<td>6.96</td>
<td>0</td>
<td>18.8</td>
<td>2.54</td>
<td>Fail</td>
</tr>
<tr>
<td>HITF19195</td>
<td>7.5</td>
<td>2.5</td>
<td>3</td>
<td>0.0570</td>
<td>6.97</td>
<td>0</td>
<td>69.9</td>
<td>9.97</td>
<td>Fail</td>
</tr>
<tr>
<td>HITF19196</td>
<td>7.5</td>
<td>2.5</td>
<td>3</td>
<td>0.0572</td>
<td>6.99</td>
<td>0</td>
<td>47.7</td>
<td>11.31</td>
<td>Fail</td>
</tr>
<tr>
<td>HITF19198</td>
<td>1.6</td>
<td>7.86</td>
<td>0.204</td>
<td>0.1163</td>
<td>6.95</td>
<td>0</td>
<td>60.3</td>
<td>0.46</td>
<td>Fail</td>
</tr>
<tr>
<td>HITF19201</td>
<td>2.18</td>
<td>3.41</td>
<td>0.639</td>
<td>0.0327</td>
<td>6.94</td>
<td>0</td>
<td>64.2</td>
<td>5.27</td>
<td>Pass</td>
</tr>
<tr>
<td>HITF19204</td>
<td>5.23</td>
<td>1.75</td>
<td>2.99</td>
<td>0.0204</td>
<td>7.00</td>
<td>0</td>
<td>81.2</td>
<td>21.47</td>
<td>Pass</td>
</tr>
<tr>
<td>HITF19206</td>
<td>1.57</td>
<td>7.71</td>
<td>0.204</td>
<td>0.1170</td>
<td>5.96</td>
<td>0</td>
<td>9.1</td>
<td>0.82</td>
<td>Fail</td>
</tr>
<tr>
<td>HITF19207</td>
<td>1.55</td>
<td>7.59</td>
<td>0.204</td>
<td>0.1170</td>
<td>6.63</td>
<td>0</td>
<td>17.2</td>
<td>0.79</td>
<td>Fail</td>
</tr>
<tr>
<td>HITF19210</td>
<td>1.55</td>
<td>3.86</td>
<td>0.402</td>
<td>0.0302</td>
<td>6.63</td>
<td>0</td>
<td>14.9</td>
<td>3.66</td>
<td>Pass</td>
</tr>
</tbody>
</table>