Baseline Assumptions and Future Research Areas for Urban Air Mobility Vehicles

Kevin Antcliff, Siena Whiteside
NASA Langley Research Center

Chris Silva, Lee Kohlman
NASA Ames Research Center

Revolutionary Vertical Lift Technology Project
Advanced Air Vehicle Program
NASA Aeronautics Mission Directorate

Presentation: TF-03, AIAA Aviation Forum, 17-21 Jun 2019
What is Urban Air Mobility (UAM)?

- A safe, efficient, accessible air transportation system for passengers and cargo within urban areas
- Enabled by convergence of electric propulsion and autonomous technologies in aviation
- Concept of Operations:
 - 10-100 mile trips (2-3x faster than cars\(^1\))
 - Operate from new ‘vertiport’ infrastructure and/or existing heliports as a part of multi-modal transportation
 - 1-9 passengers (up to ~2000 lb payload)
 - Single pilot, remote operator, or ‘autonomous’

\(^1\) AIAA 2016-3466
Key Feasibility Barriers to UAM

Ease of certification
Affordability
Safety
Ease of use
Door-to-door trip speed

Average trip delay
Community noise
Ride quality
Efficiency
Lifecycle emissions

NASA On-Demand Mobility Roadmapping Workshops, 2015-16
http://www.nianet.org/ODM/roadmap.htm
NASA UAM Reference Vehicles

- Consistent, known assumptions
- Fully documented & publicly available

Objectives

- Common reference models for researchers across UAM community
- Investigate vehicle technologies & identify enabling technologies
- Expose design trades and constraints
- Allow simulation of vehicle operations
- Develop tools & methods
NASA’s Role in UAM Vehicle Concepts

1. Develop N+1 Reference Vehicles → *Use for technology, system, and market studies*
2. Explore N+2 UAM vehicles & technologies → *Determine high-payoff technologies and research areas*
3. UAM network modeling → *Analyze the impact of a vehicle-level technology at the network-system level*

N
Current helicopter operations

N+1
First operational UAM vehicles

N+2
Next generation UAM vehicles

Timeframe:

- N: Current helicopter operations
- N+1: 2023-25
- N+2: 2030-35
Background

Initial Reference Vehicles
Johnson et al.

Updated Reference Vehicles:
Sized to UAM Mission
Silva et al.

Vehicle Technologies: N+1
Assumptions; N+2 Research Areas
Antcliff et al.

N+1 Reference Vehicles – add:
- Tiltwing
- Tiltduct
- Quiet Single Main Rotor

UAM Mission Requirements
Patterson et al.

Updated Reference Vehicles:
Sized to UAM Mission
Silva et al.

Vehicle Technologies: N+1
Assumptions; N+2 Research Areas
Antcliff et al.

N+1 Reference Vehicles – add:
- Tiltwing
- Tiltduct
- Quiet Single Main Rotor

Further vehicle research:
- UAM vehicle workshops
- Technology development
- Tool development
- Design trades
- Network modeling

siena.k.whiteside@nasa.gov
Approach

• Document assumptions for N+1 reference vehicles
• Explore potential additional research areas for N+2 vehicles

• Five major systems:
 1. Wing
 2. Rotor
 3. Propeller/fan installation
 4. Energy (Fuel) system
 5. Engine system
1. Wing

N+1 Assumptions

• Carbon composite construction:
 • Intermediate-modulus carbon composites
 • Parametric wing weight, with technology factors

• NASA general aviation airfoils:
 • Partial laminar flow
 • Benign stall characteristics
 • Benign performance degradation with contaminants

N+2 Research Area

Deflected Slipstream

• Benefits: ‘rigid’ aircraft; efficient cruise flight; improved transition characteristics; optional short takeoff and landing (STOL) capability

• Tested in 1950s/1960s: Ryan VZ-3; Fairchild VZ-5; Robertson VTOL

• Enabling technologies: distributed electric propulsion; improved control systems; improved construction materials; active flow control
2. Rotor

N+1 Assumptions:
• Carbon composite construction, with lightweight cores
• Leading edge erosion strips; anti-icing treatments
• Airfoil: Boeing VR-12 (working section); SSC-A09 (tip)

N+2 Research Area
Low-Noise Edgewise-Flight Rotors
• Recent improvements in single main rotor helicopters: potential total noise reduction $\geq 6\text{dB}$
 • Variable rotor speed operation
 • Higher harmonic control (HHC); individual blade control (IBC)
 • Blade shaping (airfoil, planform, tip)
 • NOTAR (no tail rotor)-type solution
 • Trim state modification by X-force
 • Operational adjustments
• Multi-rotor UAM: potential for greater noise reduction
3. Propeller/Fan Installation

N+1 Assumptions
• Composite construction, fixed/variable pitch
• Tip shape (performance); low tip speed (noise)

N+2 Research Areas

Stacked Propellers/Rotors
• Co-rotating, coaxially spaced propellers/rotors
• Low complexity, applicable to all vehicle sizes
• Benefits: performance and/or acoustics

Ducted Propellers/Fans
• Benefits: improved thrust/efficiency, reduced noise, terminal safety, passenger acceptability
• Tilting duct, coleopter, and lift fan have shown promise
• Electric propulsion reduces integration challenges

siena.k.whiteside@nasa.gov
4. Energy (Fuel) System

N+1 Assumptions
- Conventional fuels
- Battery specific energy 400 Wh/kg (pack):
 - 650 Wh/kg (cell-level), 30% packing weight
 - Charge to 95% capacity, discharge to 15% capacity
- Maximum C-rate: 2-3C

N+2 Research Areas
Battery installation infrastructure
- Battery management systems; packing techniques

Solid Oxide Fuel Cell (SOFC) with Liquefied Natural Gas (LNG)
- Compared to 300 Wh/kg battery packs, SOFC with LNG may provide:
 - Increased range
 - Reduced carbon dioxide emissions
 - Faster turn-around times
 - Reduced operating costs & infrastructure costs

Other alternative energy systems E.g. fuel cells, flow batteries, other battery chemistries

siena.k.whiteside@nasa.gov
5. Engine System

N+1 Assumptions

• Existing turboshaft engines
• Existing aviation diesel engines (reciprocating internal combustion engines)
• Existing aviation & automotive electric motors
• Various hybrids

N+2 Research Area

Improved Small Engine Weight Efficiencies (100-1000 shp)

• Small turboshafts: targeted research to improve power-to-weight and specific fuel consumption
 • Metal 3D-printing may enable low-cost manufacturing of recuperation options
• Small aviation diesels: advanced materials and improved design layouts to improve power-to-weight ratio; maintain good specific fuel consumption (SFC)
• Electric motors: improve power-to-weight; lesser vehicle-level payoff relative to improvements in electric energy storage methods or small engine weights

siena.k.whiteside@nasa.gov
Summary: N+2 Vehicle Technology Research Areas

1. Wing
 • Deflected slipstream

2. Rotor
 • Low-noise edgewise rotors

3. Propeller/fan Installation
 • Stacked propellers/rotors
 • Ducted propellers

4. Energy (Fuel) System
 • Battery installation infrastructure
 • SOFC with LNG
 • Other alternative fuel systems

5. Engine System
 • Small engine weight efficiencies

Discussion Questions:
1. Do you agree?
2. What are we missing?
Paper References

