Circulating miRNA Signature Predicts Health Risks Associated with Radiation and Microgravity

Afshin Beheshti, PhD
Bioinformatician at GeneLab
Principal Investigator
Space Biosciences Division, KBRWyle
NASA Ames Research Center, Moffett Field, CA
Adjunct Assistant Professor at Department of Medicine
Rutgers Robert Wood Johnson Medical School
Visiting Researcher at Broad Institute
Cambridge, MA
afshin.beheshti@nasa.gov
abehesht@broadinstitute.org
What are miRNAs and why study miRNAs

• A single miRNA has been estimated to regulate up to 500 mRNAs.
• miRNAs are ~22nt
• Due to the size and stability of the miRNAs, it can float freely in the blood.
• miRNAs are now known to be involved in all aspects of diseases.
• miRNA are not only found in mammals, but everything else living: plants, microbes, fish, C. Elegans, fruit flies, insects, etc...
• miRNAs play a big role in radiation response (which also relates to space radiation).

Space Environment

2½ Years, 2,600 X-Rays

Americans on average absorb the radiation equivalent of at least 7 chest X-rays each year.

Space missions, outside of Earth’s protective atmosphere and magnetic field, expose astronauts to many times more.

Source: Brookhaven National Laboratory, U.S. Department of Energy

Isolation/Confinement

Hostile/closed environments

Distance from Earth

Gravity Fields

Space Radiation

Credits: NASA
Space Health Risks On Astronauts

Select health effects due to space radiation exposures.

A microRNA signature and TGF-β1 response were identified as the key master regulators for spaceflight response.

Abstract

Translating fundamental biological discoveries from NASA Space Biology program into health risk from space flights has been an ongoing challenge. We propose to use NASA GeneLab database to gain new knowledge on potential systemic responses to space. Unbiased systems biology analysis of transcriptomic data from seven different rodent datasets reveals for the first time the existence of potential “master regulators” coordinating a systemic response to microgravity and/or space radiation with TGF-β1 being the most common regulator. We hypothesized the space environment leads to the release of biomolecules circulating inside the bloodstream. Through datamining we identified 13 candidate microRNAs (miRNA) which are common in all studies and directly interact with TGF-β1 that can be potential circulating factors impacting space biology. This study exemplifies the utility of the International Journal of Molecular Sciences.

Article

GeneLab Database Analyses Suggest Long-Term Impact of Space Radiation on the Cardiovascular System by the Activation of FYN Through Reactive Oxygen Species

Authors

Afshin Beheshti1,2, J. Tyson McDonald3, Jack Miller4, Peter Graham4 and Sylvain V. Costes5

1 WYLE Labs, NASA Ames Research Center, Moffett Field, CA 94035, USA
2 Department of Physics, Hampton University, Hampton, VA 23668 USA; jtmcdonald@hamptonu.edu
3 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; j_miller@lbl.gov
4 Center for Radiological Research, Columbia University, New York, NY 10032, USA; peg28@columbia.edu
5 NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA

Correspondence: afshin.beheshti@wyleinc.com (A.B.); sylvain.v.costes@nasa.gov (S.V.C.)

Tel.: +1-650-604-5343 (S.V.C.)

Received: 15 January 2019; Accepted: 30 January 2019; Published: 3 February 2019
Determining miRNA signature associated with diseases: Lymphoma

RESEARCH ARTICLE
A Circulating microRNA Signature Predicts Age-Based Development of Lymphoma
Afshin Beheshti1, Charles Vanderburg2, Justin T. McDonald3, Charusheila Ramkumar4, Tatenda Kadungure4, Hong Zhang5, Ronald B. Gartenhaus5, Andrew M. Evens1

1 Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America, 2 Harvard NeuroDiscovery Center, Massachusetts General Hospital, Massachusetts Institute of Technology, Charlestown, Massachusetts, United States of America, 3 Cancer Research Center, Hampton University, Hampton, Virginia, United States of America, 4 Department of Cell Biology and Development, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 5 Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America

Abstract
Extensive epidemiological data have demonstrated an exponential rise in the incidence of non-Hodgkin lymphoma (NHL) that is associated with increasing age. The molecular etiology of this remains largely unknown, which impacts the effectiveness of treatment for patients. We proposed that age-dependent circulating microRNA (miRNA) signatures in the host influence diffuse large B cell lymphoma (DLBCL) development. Our objective was to examine tumor development in an age-based DLBCL system using an inventive systems biology approach. We harnessed a novel murine model of spontaneous DLBCL initiation.

Serum from Patients Isolate miRNA with oligo(dT)• Hybridan
Healthy Remission Relapsed Unreated
Collect 200μl of Serum
Isolate miRNA From Serum
Convert RNA to cDNA

Through ddPCR we are able to get exact counts of circulating miRNA in the serum

Every single blue point on the plots represents one copy of miRNA (see arrows).

10 significant miRNAs that overlap and are regulated in same direction compared to controls
miRNAs Associated with DLBCL Development: in Humans

A) miRNA signature in serum with 9 miRNAs

B) ROC Curves for Comparisons

C) miRNA signature with 5 most significant miRNAs

D) miRNA Signature in Serum of Humans

A) KEGG Pathways

B) GO Pathways

C) Color Key

D) ddPCR data

Through ddPCR we are able to get exact counts of circulating miRNA in the serum.
miRNA Signature Prediction Associated with Space Flight

A microRNA signature and TGF-β1 response were identified as the key master regulators for spaceflight response

Abstract

Translating fundamental biological discoveries from NASA Space Biology program into health risk assessment has been an ongoing challenge. We propose to use NASA Genelab database to gain new knowledge on potential systemic responses to space. Unbiased systems biology analysis of transcriptomic data from seven different rodent datasets reveals for the first time the existence of potential "master regulators" coordinating a systemic response to microgravity and space radiation with TGF-β1 being the most common regulator. We hypothesized the space environment leads to the release of biomolecules circulating inside the blood stream. Through data mining we identified 13 candidate microRNAs (miRNAs) which are common in all studies and directly interact with TGF-β1 that can be potential circulating factors impacting space biology. This study exemplifies the utility of the GeneLab data repository to aid in the process of performing novel hypothesis-based research.

https://genelab.nasa.gov/
Predicted miRNAs Involved with Spaceflight

A) Top 10 predicted miRNAs from p-values

B) All miRNAs with Z-scores > 2 or < -2

Health Risk Due to miRNAs

- Predicted Activation
- Predicted Inhibition

Positive Impact on Health
Negative Impact on Health
Both Positive and Negative Impact

Response of miRNAs to spaceflight

Biological Health Risk Increased

Correlation of miRNA-mRNA pairs

miR-9-3p
miR-155-3p
miR-150-5p
miR-378-3p

Copyright © 2014 C. Girardi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity condition, simulated by a ground-based rotating wall vessel (RWV) bioreactor. Our results show that 42 miRNAs were differentially expressed in MMC-incubated PBLs compared with Ig incubated ones. Among these, miR-9-3p, miR-155-3p, miR-150-5p, and miR-378-3p were the most dysregulated.

To improve the detection of functional miRNA-mRNA pairs, we performed gene expression profiles on the same samples assayed for miRNA profiling and we integrated miRNA and mRNA expression data. The functional classification of miRNA-correlated genes evidenced significant enrichment in the biological processes of immune/inflammatory response, signal transduction, regulation of response to stress, regulation of programmed cell death, and regulation of cell proliferation. We identified the correlation of miR-9-3p, miR-155-3p, miR-150-5p, and miR-378-3p with that of genes involved in immune/inflammatory response (e.g., IFNG and IL17F), apoptosis (e.g., PDCD4 and PTEN), and cell proliferation (e.g., NFKB1 and GADD45A). Experimental assays of cell viability and apoptosis induction validated the results obtained by bioinformatics analyses demonstrating that in human PBLs the exposure to reduced gravitational force increases the frequency of apoptosis and decreases cell proliferation.

1 Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 5, 35131 Padova, Italy
2 Laboratori Nazionali di Legnaro, INFN, Via del Parco 1, Legnaro, 35020 Padova, Italy

Correspondence should be addressed to L. Ceolotti, lucia.ceolotti@unipd.it and M. Mognato, maddalena.mognato@unipd.it

Received in April 2014; Revised 22 May 2014; Accepted 22 May 2014; Published 23 June 2014

Academic Editor: Mariano Bia

This work was supported by the European Commission within the framework of the FP7 Health project "Health Risk Due to miRNAs in Spaceflight Exposure" (Grant Agreement no. 315804).
Technique to Quantify miRNAs

Hindlimb Unloading

1. **Collect** 200µl of Serum
2. **Isolate** miRNA From Serum
3. **Convert** RNA to cDNA
 - Mix cDNA, EvaGreen Master mix & primers and generate droplets
4. **Mix** cDNA, EvaGreen Master mix & primers and generate droplets
5. **Process & Analyze** ddPCR data

Through ddPCR we are able to get exact counts of circulating miRNA in the serum.

Every single blue point on the plots represents one copy of miRNA (see arrows).
Presence of miRNA signature in Serum of Mice in Simulated Space Environment

- HU for an initial three days followed by IR and continuation of HU for another 1 or 11 days
- Radiation exposure: Total body irradiation on conscious mice
 - 2Gy Gamma
 - 600 MeV/n ^{56}Fe (1 Gy and 2 Gy)
 - 150 MeV Proton (1Gy)
 - ‘1Gy Mix’ (0.5Gy ^{56}Fe and 0.5Gy Proton)

Significance compared to serum from Sham NL (Time Post IR)
* p-value < 0.05
** p-value < 0.01
*** p-value < 0.001
Confirmation exists in the miRNAs from the NASA Twin Study!!!
miRNA Research will Further Assist with NASA's Future Missions

HUMAN EXPLORATION
NASA's Path to Mars

EARTH RELIANT
MISSION: 6 TO 12 MONTHS
RETURN TO EARTH: HOURS
Mastering fundamentals aboard the International Space Station

PROVING GROUND
MISSION: 1 TO 12 MONTHS
RETURN TO EARTH: DAYS
Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit

MARS READY
MISSION: 2 TO 3 YEARS
RETURN TO EARTH: MONTHS
The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft

U.S. companies provide access to low-Earth orbit

Developing planetary independence by exploring Mars, its moons and other deep space destinations

www.nasa.gov

NASA 2018 Strategic Plan Framework

<table>
<thead>
<tr>
<th>Theme</th>
<th>Strategic Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCOVER</td>
<td>EXPAND HUMAN KNOWLEDGE THROUGH NEW SCIENTIFIC DISCOVERIES.</td>
</tr>
<tr>
<td></td>
<td>1.1: Understand the Sun, Earth, Solar System, and Universe.</td>
</tr>
<tr>
<td></td>
<td>1.2: Understand/Respond to Physical and Biological Systems to Spaceflight.</td>
</tr>
<tr>
<td>EXPLORE</td>
<td>EXTEND HUMAN PRESENCE DEEPER INTO SPACE AND TO THE MOON FOR SUSTAINABLE LONG-</td>
</tr>
<tr>
<td></td>
<td>TERM EXPLORE AND UTILIZATION.</td>
</tr>
<tr>
<td></td>
<td>2.1: Lay the Foundation for America to Maintain a Constant Human Presence in</td>
</tr>
<tr>
<td></td>
<td>Low Earth Orbit Enabled by a Commercial Market.</td>
</tr>
<tr>
<td></td>
<td>2.2: Conduct Exploration in Deep Space, Including to the Surface of the Moon.</td>
</tr>
<tr>
<td>DEVELOP</td>
<td>ADDRESS NATIONAL CHALLENGES AND CATALYZE ECONOMIC GROWTH.</td>
</tr>
<tr>
<td></td>
<td>3.1: Develop and Transfer Revolutionary Technologies to Enable Exploration</td>
</tr>
<tr>
<td></td>
<td>Capabilities for NASA and the Nation.</td>
</tr>
<tr>
<td></td>
<td>3.2: Transition Aviation Through Revolutionary Technology Research, Development,</td>
</tr>
<tr>
<td></td>
<td>and Transfer.</td>
</tr>
<tr>
<td></td>
<td>3.3: Inspire and Engage the Public in Aeronautics, Space, and Science.</td>
</tr>
<tr>
<td>ENABLE</td>
<td>OPTIMIZE CAPABILITIES AND OPERATIONS.</td>
</tr>
<tr>
<td></td>
<td>4.1: Engage in Partnership Strategies.</td>
</tr>
<tr>
<td></td>
<td>4.2: Enable Space Access and Services.</td>
</tr>
<tr>
<td></td>
<td>4.3: Assure Safety and Mission Success.</td>
</tr>
<tr>
<td></td>
<td>4.4: Manage Human Capital.</td>
</tr>
<tr>
<td></td>
<td>4.5: Ensure Enterprise Protection.</td>
</tr>
<tr>
<td></td>
<td>4.6: Sustain Infrastructure Capabilities and Operations.</td>
</tr>
</tbody>
</table>

EXPAND HUMAN KNOWLEDGE THROUGH NEW SCIENTIFIC DISCOVERIES.
Acknowledgments for miRNA Studies

This work is supported by:
16-ROSBFP GL-0005: NNH16ZTT001N-FG
Appendix G: Solicitation of Proposals for Flight and Ground Space Biology Research

The Translational Research Institute through NASA Cooperative Agreement NNX16AO69A (T-0404)