Oculometric Assessment of Mild Neural Impairment

Lee Stone
Principal Investigator
Visuomotor Control Laboratory
NASA Ames Research Center

Research supported by ONR Force Health Protection Program (BLAST project) under NASA Space Act Agreement SAA 402925-1
Methods:

- **Video-based tracker & gaming display**
- **Radial step-ramps (90-180 directions)**

- **Participants instructed to track the moving target as best they can as soon as it starts moving until it disappears.**

Methods:

1. **Fixate centrally**
2. **Initiate trial by button press**
3. **Target steps out radially**
4. **Moves back across fovea**
5. **Target is extinguished**

- 200-5000 ms
- 700-1000 ms

- Radial step-ramps (90-180 directions)
Key System Features:
To optimize S/N of oculomotor measurements, our existing data-collection and analysis system has the following features:

- High spatio-temporal resolution eye tracking (250 Hz sampling rate with HD spatial resolution)\(^1\).
- High spatio-temporal resolution display (144 Hz LCD display of HD images)\(^1\).
- Robust and automated saccade detection to properly separate pursuit from saccades (reliably identifies small saccades down to \(~0.15\) deg of amplitude)\(^2\).
- Efficient (~5-min) radial tracking task with spatial, temporal, directional, and speed randomization (high uncertainty) to minimize anticipatory responses and to assess direction and speed tuning of visual motion processing\(^3,4,5\).

Oculometric summary chart:

Pursuit System
- Latency
- Initial acceleration
- Steady-State Gain
- Proportion smooth

Saccade System
- Rate
- Amplitude
- Direction dispersion
- Peak Velocity - slope
- Peak Velocity - Intercept

Direction Tuning
- Anisotropy (oblique effect)
- Hor/Vert Asymmetry
- Noise

Speed Tuning
- Responsiveness
- Noise

Fixational Drift
- Centripetal
- Lateral

Pupil Light Reflex
- Contraction tau
- Dilation tau
- Contraction latency
- Dilation latency
- Mean pupil size
Effect of low-dose EtOH
Raw Data: Two individual trials

- Alcohol generates: 1) decreased steady-state eye velocity (blue trace) that does not match target speed (green) & 2) increased number/size of compensatory saccades.
- While the participant continues to try to catch up to the moving target with saccades, there is no smooth acceleration response despite the large residual retinal slip.

BAC: 0.00%

BAC: 0.06%
All four pursuit parameters are significantly impaired (significant linear trend), starting at ~0.01% BAC (lowest significant Bonferroni-Holms corrected post-hoc t-tests). Data points here, and elsewhere, are turned red if Bonferroni-Holms corrected post-hoc t-tests are significant (only after a primary finding of a significant (p < 0.05) trend using linear regression). Open-loop (acceleration) and closed-loop (gain) responses are reduced by ~25% at ~0.06%, leading to 1.1 deg of lost ground in the steady-state analysis window.

Tyson, Feick, Cravalho, Tran, Flynn-Evans, & Stone, Impairment of Human Ocular Tracking with Low-Dose Alcohol, Neural Control of Movement abstract (2018)
• Saccadic amplitude increases significantly starting at ~0.015% BAC plus a weak rate increase, recouping 1.1 deg of ground (near complete compensation) for pursuit loss.
• Saccadic dynamics (main sequence) show significant trends with clear impairment at 0.035%, suggesting impact on the brainstem saccadic generator at moderate BACs.

The precision of motion processing is significantly impaired starting at ~0.01% BAC (direction by ~80% at ~0.065% with speed precision effect weaker at ~25%).

No change in direction tuning (anisotropy/asymmetry); decreased speed response.
As expected, centripetal drift (gaze-evoked nystagmus with fixation at ±25deg) shows a significant linear trend with BAC, consistent with cerebellar involvement, yet there is no clear impairment threshold below 0.07% due to inter-subject variability.

No systematic lateral drift, suggesting balanced cortical motion inputs.
Effect of 24-hr Acute Sleep Deprivation and Circadian Misalignment
- Smooth pursuit behavior is significantly impaired starting 2-4 hours after bedtime, but latency is not systematically affected (unlike with alcohol).

- Open-loop (initial acceleration) and closed-loop (steady-state gain) responses are reduced by ~15-20% by ~21hrs of being awake, leading to ~0.9 deg of lost ground.

- Saccadic rate increases peaking at ~20% (with no change in amplitude unlike with alcohol) recouping ~0.45 deg of lost ground, or ~50% compensation for pursuit loss.
- Saccadic dynamics show impairment, suggesting brainstem saccadic generator involvement, but intercept change is in opposite direction as for alcohol consumption.

The precision of motion processing is significantly impaired (15-30% after 22 hrs awake) suggesting (extrastriate and/or frontal) cortical involvement.

- No change in oblique effect (anisotropy) or speed tuning, but reduced H/V asymmetry.
Assessing countermeasure efficacy

Motion Processing

- Caffeine protects the precision of motion processing (no residual linear trends).
- Caffeine does not alter direction tuning; oblique effect or H/V asymmetry unchanged.

Leveraging multi-dimensionality

• **Sensitivity:** Increasing the set of largely independent metrics increases overall detectability by (on the order of) \(\sqrt{N} \) (with \(N \), the number of largely independent metrics). By projecting an individual’s “performance vector” onto a candidate “impairment vector” for a given suspected condition, one can compute an overall “impairment index” with greater sensitivity.

• **Specificity:** The pattern of effects across metrics allows us to characterize the deficit (and to assist in diagnosis). By comparing impairment indices for multiple potential causes (e.g., TBI, sleep deprivation, alcohol, etc. with non-collinear impairment vectors), one can estimate the relative probabilities across a set of suspected causes.
Increased Sensitivity:
Effect of Traumatic Brain Injury (TBI)
34 recovered/ing TBI patients (red Gaussian and histogram) were compared to a separate population of 41 normal (green Gaussian) using z-scored oculometrics.

Many TBI population metrics (red) were found to be significantly (p < 0.05) worse than normal (green):
- Latency (ROC area: 74%)
- Initial Acceleration (82%)
- Gain (80%)
- Saccadic Amplitude (71%)
- Proportion smooth (84%)
- Speed tuning/slope (81%)
- Speed precision unchanged (66%)

Individual metric sensitivity: ~71-84%

Enhanced sensitivity through combined metrics:

- We combined oculometric measures into a single TBI impairment index and sub-divided TBI population by residual severity
 (1 ‘little to no residual injury” to 10 “completely disabled”)
- Plot shows overall detectability using TBI impairment index (90% confidence interval).
- Detectability of those with severity of 1 was 59% (not significant).
- Detectability for 25 subjects reporting meaningful residual impairment (severity > 1) was 85% to 95%.
- Combining multiple oculometric measures allows for greater sensitivity to detect mild neural impairments ➔ overall TBI index sensitivity: ~91%
Enhanced specificity:
Differential effects of alcohol and acute sleep deprivation on the Pupillary Light Reflex (PLR)
Different response pattern across set of measures

- Sleep deprivation systematically decreases dilation time constant & mean pupil size.
- Low-dose alcohol does not alter any of our five measured PLR parameters.
By combining across a judiciously selected subspace of oculometric measures one can craft a biomarker with sensitivity to detect mild alcohol intoxication (right-hand panel) yet specificity to reject effects from other causes (no shift in left-hand panel) ➔ Sleep-loss detectability: ~81% (with no alcohol confound).

Conclusion

We used a set of nearly two dozen oculometric measurements during a 5-min behavioral task to examine a range of visual and visuomotor deficits associated with alcohol consumption, sleep loss, and traumatic brain injury. We found different patterns of impairment from these stressors across our metrics.

Our approach provides a sensitive and specific method:
- to detect sub-clinical impairment of neural function, and
- to distinguish between suspected potential causes.
Acknowledgments

Dr. Erin Flynn-Evans, Principal Investigator
Fatigue Countermeasures Laboratory

Terence Tyson, General Engineer
Visuomotor Control Laboratory

and the San Jose State University Team: Dr. Patrick Cravalho
Nathan Feick
Dr. Dorion Liston
and Lily Wong