MoonBEAM
A beyond Earth-orbit GRB detector for multi-messenger astronomy

*not to scale

C. Michelle Hui (NASA/MSFC)

MSFC: D. Kocevski, T. Littenberg, C. Wilson-Hodge, J. Wood

UAH: M. Briggs, P. Jenke

USRA: C. Fletcher, A. Goldstein, O. Roberts

GSFC: E. Burns, J. Perkins, J. Racusin, J. R. Smith
MoonBEAM
Moon Burst Energetics All-sky Monitor

- 2-year SmallSat mission concept to detect gamma-ray bursts.
- Science instrument is 5 detector modules (NaI/CsI phoswich + SiPM) positioned to maximize sky coverage.
- Cislunar orbit at L3 point of Earth-Moon system (95,500 — 665,000 km from Earth).
 - Earth occults < 0.1% of sky at maximum.
 - High duty cycle, no SAA passage.
 - More stable background compared to Low Earth Orbit.
 - Additional localization improvement with IPN-like timing triangulation.

SGRB rate estimate 30-70/year
*assuming single-crystal detector
MoonBEAM
Moon Burst Energetics All-sky Monitor

- 2-year SmallSat mission concept to detect gamma-ray bursts.
- Science instrument is 5 detector modules (NaI/CsI phoswich + SiPM) positioned to maximize sky coverage.
- Cislunar orbit at L3 point of Earth-Moon system (95,500 — 665,000 km from Earth).
 ▶ Earth occults < 0.1% of sky at maximum.
 ▶ High duty cycle, no SAA passage.
 ▶ More stable background compared to Low Earth Orbit.
 ▶ Additional localization improvement with IPN-like timing triangulation.

Median-bright GRB at 45deg baseline MoonBEAM average distance from Earth

\[
\cos \theta_{12} = \frac{c \Delta t_{12}}{d_{12}}
\]

Years Covered Number of GRBs Description

<table>
<thead>
<tr>
<th>Years</th>
<th>Number of GRBs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000–2006</td>
<td>226</td>
<td>HETE-2 supplement</td>
</tr>
<tr>
<td>1996–2000</td>
<td>343</td>
<td>BATSE 5B supplement</td>
</tr>
<tr>
<td>1994–2012</td>
<td>271</td>
<td>Konus short bursts</td>
</tr>
<tr>
<td>1992–1993</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1991–1994</td>
<td>218</td>
<td>BATSE 3B supplement</td>
</tr>
</tbody>
</table>

MoonBEAM
Moon Burst Energetics All-sky Monitor

- 2-year SmallSat mission concept to detect gamma-ray bursts.
- Science instrument is 5 detector modules (NaI/CsI phoswich + SiPM) positioned to maximize sky coverage.
- Cislunar orbit at L3 point of Earth-Moon system (95,500 — 665,000 km from Earth).
 - Earth occults < 0.1% of sky at maximum.
 - High duty cycle, no SAA passage.
 - More stable background compared to Low Earth Orbit.
 - Additional localization improvement with IPN-like timing triangulation.

MoonBEAM localization of an average GRB
MoonBEAM + LEO instrument timing annulus
Combined posterior (loc area reduced by factor of 3)