Computation of fiber orientation in X-ray micro-tomography reconstructions

Presented by Federico Semeraro
Monday 16th September 2019

Authors: Federico Semeraro¹, Joseph C. Ferguson¹, Francesco Panerai², Nagi N. Mansour³

1. Science and Technology Corp. at NASA Ames Research Center, Moffett Field, CA 94035
2. Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801
3. NASA Ames Research Center, Mail Stop 258-5, Moffett Field, CA 94035

Technical Session #1:
Micro-tomography based analysis
MOTIVATION & OBJECTIVES
Modeling Thermal Protection Systems (TPS)

Macroscale Modeling
Full scale material response solvers, using volume-averaged techniques to solve conservation equations for ablation

Microscale Modeling
Used to inform material properties and material response parameters used in macro-scale modeling

Simulation of surface temperature for MSL heatshield*1

Lachaud and Mansour, JTHT 2013

Porous Microstructure Analysis (PuMA)

CT Reconstruction of FiberForm
Challenges in Micro-scale modeling

As NASA moves towards woven TPS materials, our modeling must adapt.
Objectives

Computation of Effective Material Properties

Fiber Orientation Estimation*¹

Physical and Numerical Model*²

FIBER ORIENTATION METHODS
Overview

• Ray Casting (novel)
• Artificial Flux*¹
• Structure Tensor*²

Ray Casting

\[\theta \in [0, 180^\circ) \quad \phi \in [0, 360^\circ) \]

\[N = \left(\frac{180^\circ}{d\psi} - 1 \right) \left(\frac{360^\circ}{d\psi} \right) + 2 \]
Artificial Flux

\[T_{i+1/2} = \frac{k_{i+1}}{k_i + k_{i+1}} T_{i+1} + \frac{k_i}{k_i + k_{i+1}} T_i \]
Structure Tensor

4 Steps:

1. \[\nabla I_{\sigma}(x) = \nabla(\sigma \ast I(x)) \]

2. \[\nabla I_{\sigma} \nabla I_{\sigma}^T = \begin{pmatrix} I_x^2 & I_x I_y & I_x I_z \\ I_x I_y & I_y^2 & I_y I_z \\ I_x I_z & I_y I_z & I_z^2 \end{pmatrix} \]

3. \[J_\rho(x) = \rho \ast (\nabla I_{\sigma} \nabla I_{\sigma}^T) \]

4. Local orientation vector \(v \) is the eigenvector related to the smallest eigenvalue of \(J_\rho(x) \)

\[(I(x + v)I(x))(x))^2 \approx 0 \]
Conductivity Tensor Rotation

\[
v = v_x i + v_y j + v_z k
\]

\[
k'' = \begin{bmatrix}
 k^{\text{Long.}} & 0 & 0 \\
 0 & k^{\text{Trans.}} & 0 \\
 0 & 0 & k^{\text{Trans.}}
\end{bmatrix}
\]

\[
\theta = \arcsin v_z \quad \phi = \arctan \frac{v_y}{v_x}
\]

\[
q = \left(R^{-1} k'' R \right) \nabla T
\]

\[
R = \begin{bmatrix}
 \cos \theta & 0 & -\sin \theta \\
 0 & 1 & 0 \\
 \sin \theta & 0 & \cos \theta
\end{bmatrix} \begin{bmatrix}
 \cos \phi & \sin \phi & 0 \\
 -\sin \phi & \cos \phi & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]
APPLICATION TO MATERIALS
Parametric Study

Artificial Straight Fibers 2D Weave 3D Weave

Methods’ Inputs

Ray Casting (RC)
 Ray angle separation $d\psi$

Artificial Flux (AF)
 Solver Tolerance

Structure tensor (ST)
 Kernel window sizes:
 1. σ
 2. ρ

Methods’ Performance

Mean Angular Error

$$\mu_E = \sum_{n=1}^{N_{solid}} \frac{\alpha_n(x)}{N_{solid}}$$
Results on Artificial Fibrous Samples

<table>
<thead>
<tr>
<th>Resolution (vox)</th>
<th>$\mu_{E,ST}(^\circ)$</th>
<th>$\mu_{E,AF}(^\circ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>200^3</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>400^3</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>600^3</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>800^3</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Increasing fiber radius

Structure Tensor (ST) Artificial Flux (AF) Ray Casting (RC)
Results on Real Fibrous Samples

FiberFormTM 8003 voxels
\[\mu_\alpha = 21.6^\circ \]

Morgan Felt 8003 voxels
\[\mu_\alpha = 8.5^\circ \]
Results on Artificial Woven Samples

<table>
<thead>
<tr>
<th>Design</th>
<th>Resolution (vox)</th>
<th>$\mu_{E,ST}$ (°)</th>
<th>$\mu_{E,AF}$ (°)</th>
<th>$\mu_{E,RC}$ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular</td>
<td>200$^2 \times 50$</td>
<td>4.9</td>
<td>14.0</td>
<td>16.5</td>
</tr>
<tr>
<td>Tows</td>
<td>400$^2 \times 100$</td>
<td>4.6</td>
<td>12.5</td>
<td>17.6</td>
</tr>
<tr>
<td>Circular</td>
<td>600$^2 \times 150$</td>
<td>4.8</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>Tows</td>
<td>800$^2 \times 200$</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elliptical</td>
<td>200 $\times 400 \times 80$</td>
<td>30.1</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>Tows</td>
<td>400 $\times 800 \times 160$</td>
<td>25.9</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>Elliptical</td>
<td>600 $\times 1200 \times 240$</td>
<td>25.9</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>Tows</td>
<td>800 $\times 1600 \times 320$</td>
<td>26.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tow Curvature and Contact

2D Weave

3D Weave

Structure

Artificial Flux (AF)

Ray Casting (RC)
Improved Workflow for Weave Orientation

Individual tow segmentation

Mean Filtering

Artificial Flux (AF) $\mu_{E,AF} = 2.3^\circ$

Structure Tensor (ST) $\mu_{E,ST} = 1.7^\circ$
Real Woven Sample*1

Summary

1. Ray Casting:
 - Performs well on artificial straight fibers ($\mu \sim 3 - 5^\circ$) and similar to other methods on binarized woven structures ($\mu \sim 10 - 15^\circ$). Slight improvement in new workflow ($\mu \sim 9^\circ$)
 - **Limitation:** affected by large fiber curvatures and computational expensive

2. Artificial Flux:
 - Easy to use because independent on inputs. Performs similar to other methods on binarized weaves ($\mu \sim 15^\circ$). Very accurate when using new workflow for woven materials ($\mu \sim 1 - 3^\circ$)
 - **Limitation:** Performs poorly on artificial straight fibers due to regions not being in the path of heat flux through the material ($\mu \sim 15 - 20^\circ$)

3. Structure Tensor:
 - Performs effectively on artificial straight fibers ($\mu \sim 1 - 5^\circ$) and similar to other methods on binarized weaves ($\mu \sim 20^\circ$). Very accurate when using new workflow for woven materials ($\mu \sim 1 - 2^\circ$)
 - **Limitation:** hard to define optimal window a priori. For high resolutions, window must be sufficiently large, which can be very expensive