PA23A-1151: Leveraging the Power of SAR Observations for Forest Monitoring Systems

Kelsey E. Herndon,1,2,3,4,5,6,7,8,9,10,11 Afroza Fles-Anderson,1,2,3,4,5,6,7,8,9,10,11 Emil Cherninov,1,2,3,4,5,6,7,8,9,10,11 Rajesh Thapli,1,2,3,4,5,6,7,8,9,10,11 Leah Kucera,1,2,3,4,5,6,7,8,9,10,11 David Saha,1,2,3,4,5,6,7,8,9,10,11 Nguyen Quyen,1,2,3,4,5,6,7,8,9,10,11 Rebekah Muench,1,2,3,4,5,6,7,8,9,10,11 Begum Rushi,1,2,3,4,5,6,7,8,9,10,11 Emily Adams,1,2,3,4,5,6,7,8,9,10,11 Phoebie Odoua,1,2,3,4,5,6,7,8,9,10,11 Ashutosh Limaye,1,2,3,4,5,6,7,8,9,10,11 Bako Mamane,1,2,3,4,5,6,7,8,9,10,11 Krishna Vadrevu,1,2,3,4,5,6,7,8,9,10,11 Sylvia Wilson,1,2,3,4,5,6,7,8,9,10,11 Saina Gollstieb,1,2,3,4,5,6,7,8,9,10,11 and Francisco Delgado1,2,3,4,5,6,7,8,9,10,11


Abstract

Earth observations from Synthetic Aperture Radar (SAR) can provide unique information related to forest structure and condition. Despite the many advantages of SAR, particularly where clouds impede optical observations, a knowledge gap has prevented the applied remote sensing community from harnessing its full potential. Here, we discuss the results of a collaboration between SERVIR, a joint program between NASA and the U.S. Agency for International Development (USAID), and SilicaCarbon, the United States’ contribution to the Global Forest Observation Initiative, to build global capacity in using SAR for forest monitoring and biomass estimation. This includes primarily the creation of 1) The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation, 2) a series of international hands-on training resources, 3) quick-reference guides illustrating SAR concepts, and 4) animated videos explaining how SAR works.

The SERVIR-Global community joined efforts to develop a hands-on guide to support decision-makers in the forestry community to leverage the power of SAR technology to better protect and manage forest resources. We worked with world-renowned SAR experts to provide targeted trainings and develop the SAR Handbook. This handbook consists of approachable theoretical background and applied content that contributes to filling the knowledge gap in the applied use of SAR technology for forestry applications. We hope that forest managers and remote sensing specialists will use these materials to benefit from currently available SAR datasets, as well as prepare for future SAR missions, such as NSAR and BIOMASS. Since its release on April 11, 2019, the SAR Handbook materials have been accessed more than 320,000 times, demonstrating the remote sensing community’s urgent need and interest to learn and use SAR.

Methodology

SERVIR network-wide needs assessment

Partnering with six SAR subject matter experts

Collaborating on trainings, theoretical chapters, and a suite of communication and education materials

Products

A series of one-pagers distill complex information and processes into an easy to understand format. The topics of these one-pagers range from data preprocessing to forest stand height estimation to SAR vegetation indices and more.

Global Reach

From April 10, 2019–October 31, 2019:
- Full Handbook and additional materials have been accessed more than 320,000 times
- 172 countries have accessed SAR Handbook and complementary materials
- Shared across over a dozen organizations, including: NASA JPL, ESA, JAXA, EO College, GIS and Beers, AkinPar, AgenPar, JAXA, NASA DISCOMET, and more

Conclusions

- The Handbook is a living document: there will be continual development of applied content and trainings
- There is a need for follow-on refresher courses and improved skills transfer processes to move from trainings to operational use
- Identified need to develop allometric equations to improve localized biomass estimates
- Focus on using open-source software is the right solution but brings additional challenges in terms of capacity building

Acknowledgements

The authors would like to thank SERVIR and SilicaCarbon leadership for supporting these efforts. We would also like to extend our sincere gratitude to the SAR subject matter experts who made this work possible by developing ways to communicate these complex concepts to non-SAR experts: Franz Meyer, Josef Kellndorfer, Paul Siqueira, Sassan Saatchi, Marc Simard, and Hans Andersen.

Questions? Contact kelsey.e.herndon@nasa.gov