Supply Chain Ecosystem for Urban Air Mobility

Parimal Kopardekar, PhD
Director of NASA Aeronautics Research Institute (NARI)
NASA Senior Technologist, Air Transportation Systems
Scalability is Fundamental Need for UAM

- Many pilots (or acceptable and reliable autonomy)
- Spectrum availability
- Airspace operations (e.g., Unmanned Aircraft System Traffic Management type construct)
- Acceptable noise
- Mass production of electric or hybrid VTOLs
- Infrastructure (including recharging systems)
Mass Production of VTOL Vehicles

- Production rates need to be closer to cars than conventional aircraft
 - Manufacturing and assembly methods
 - Supply chain network and ecosystem
Supply Chain: Basics

- Supply chain consists of all parties involved, directly or indirectly, in fulfilling a customer need
- Aerospace supply chain is an ecosystem of different supplier tiers
- Includes manufacturers, suppliers, transporters, warehouses, etc.
- Supply chain management refers to coordination of all supply chain activities starting with raw materials and ending with a satisfied customer
 - Purpose: Maximize competitive advantage and benefit customer
Current State of the Art in Aero Supply Chain

- Boeing and Airbus have backorders (~5000+, with ~55/month rate)
 - Boeing delivered 806 aircraft and Airbus 800 in 2018
 - In 2016, Boeing had 5715 undelivered orders and Airbus had 6874

![Forecasted production levels of commercial aircraft: 2016 to 2034](image-url)
Current State of the Art

• Presidential executive order on assessing and strengthening the manufacturing and defense industrial base and supply chain resiliency of the United States (executive order 13806, September 2018)

• Decline of U.S. manufacturing capabilities and capacities

• Competitiveness

• Diminishing STEM and trade skills
Current State of the Art

• Risk Archetypes
 • Limited/sole sources
 • Fragile supplier and market
 • Capacity constrained supply market
 • Foreign dependency
 • Diminishing manufacturing sources and material shortages
 • Gap in U.S. human capital
 • Product security
Supply Chain Strategies

• Many suppliers
• Few suppliers
• Vertical Integration
• Joint Ventures
• Horizontal Integration
• Keiretsu Networks (part collaboration, part few suppliers, part vertical integration)
• Virtual Companies
- **OEM** – Control design, manufacturing and assembly function, the most critical component of value chain
- **Tier 1** – Support Primes by providing them with equipments and systems like engines, Wings, Fuselage
- **Tier 2** – Manufacture and develop parts as per the specifications provided by primes and Tier 1 suppliers
- **Tier 3** – Responsible for supplying basic products, components and other non-core value added services

Known Aero Supply Chain Related Issues

• Sourcing of raw materials – aluminum, steel, copper, etc.

• Mitigating supply disruption risks (e.g., geopolitical considerations)

• Coping with Modernization and Emerging Technologies (e.g., wiring problems, software issues)

• Shortage of skilled workers (Tim Cook’s view on outsourcing)
Supply Chain Considerations and Challenges

(Credit: EY – A&D Edge, Supply Chain Management in Aerospace and Defense, Feb 2018, slides 8-9)

<table>
<thead>
<tr>
<th>Design and Engineering</th>
<th>Planning</th>
<th>Procurement</th>
<th>Manufacturing</th>
<th>Aftermarket</th>
</tr>
</thead>
</table>
| Considerations | - Timeline
 - Cost
 - Quality
 - Margin
 - IP
 - Efficiency | - Forecast accuracy
 - Supply disruptions
 - Demand shifts
 - Inventory
 - Supply chain visibility
 - Lead times | - Supplier performance
 - Price volatility
 - Cost and prices
 - Lead times
 - Supplier due diligence | - Quality
 - Stock-outs
 - Waste
 - Capacity
 - Cost
 - Contract
 - Safety | - Ground time
 - On-time delivery
 - Network
 - Safety |
| Challenges | - Dependence on large number of sole-source suppliers
 - Long lead time
 - Financial challenges across the supply chain for new programs
 - Large inventory needs
 - Collaboration across complex supply chain
 - Cyber and security |
Recommendations: Supply Chain for Urban Air Mobility Vehicles (Drones and VTOLs)

• Time to start building an entire new eco-system

• Take advantage of other manufacturing (e.g., auto)

• Rebuild/train auto, heavy industries, traditional aerospace suppliers to consider VTOL

• Get regional manufacturing and supply chain associations exposed to emerging aero needs
Recommendations: Supply Chain for Urban Air Mobility Vehicles (Drones and VTOLs)

• Build an electronic exchange platform to connect VTOL customers with suppliers
 • Prototypes
 • Job production
 • Mass production
 • Quality management based on FAA production need
• Training workforce: curriculum, skills, and entrepreneurs
Recommendations: Supply Chain for Urban Air Mobility Vehicles (Drones and VTOLs)

• Build a robust maintenance and reconditioning network and reliable authenticated parts supplier base
• Need global network to address MRO considerations related to operations – cycle time is critical
Summary

• Real need to build supply chain—drones are already here

• Global supplier base for OEMs and MROs is needed

• Rate of production and delivery needs to be significantly different than today’s aerospace manufacturing and assembly

• Parts access will need to be rapid for MROs

• Time to rebuild skills, talents, digital enterprise and attract new manufacturers to scale deliveries
BACKUP
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Dependence on sole source suppliers</th>
<th>Long lead time</th>
<th>Financial challenges</th>
<th>Large inventory</th>
<th>Collaboration across supply chain</th>
<th>Cyber threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adoption of digital technologies</td>
<td>Moderate</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Risks-sharing partnerships</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Integration</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>Monitor security</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Cross-sourcing</td>
<td>Low</td>
<td>High</td>
<td></td>
<td>High</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Multiple sourcing</td>
<td>High</td>
<td>Moderate</td>
<td></td>
<td></td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Readiness assessment</td>
<td>High</td>
<td></td>
<td></td>
<td>High</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Local players in supply network</td>
<td>High</td>
<td></td>
<td></td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low</td>
</tr>
</tbody>
</table>

Credit: EY – A&D Edge, Supply Chain Management in Aerospace and Defense, Feb 2018)