Plant Water Management (PWM)

Tyler Hatch

NASA

Glenn Research Center
Overview

• Plant Water Management Team

• Science Background

• Experiment Hardware

• Analysis of System

• Future Plans
PWM Team Contacts

Science

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Mark Weislogel</td>
<td>Principal Investigator</td>
<td>Portland State University</td>
<td>mmw@cecs.pdx.edu</td>
</tr>
<tr>
<td>John McQuillen</td>
<td>SLSERA Fluid Physics Discipline Lead</td>
<td>NASA</td>
<td>john.b.mcquillen@nasa.gov</td>
</tr>
<tr>
<td>Tyler Hatch</td>
<td>Project Scientist</td>
<td>NASA</td>
<td>tyler.r.hatch@nasa.gov</td>
</tr>
</tbody>
</table>

Management

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelly Bailey</td>
<td>Project Manager</td>
<td>NASA</td>
<td>kelly.a.bailey@nasa.gov</td>
</tr>
<tr>
<td>Bradford Martin</td>
<td>Project Manager</td>
<td>Zin Technologies, Inc.</td>
<td>martinb@zin-tech.com</td>
</tr>
</tbody>
</table>
NASA’s Plant Water Management Challenges

• Plant watering is complicated by the absence of gravity:
 – aeration (gas/fluid interactions)
 – diffusion of nutrient solution
 – root growth

• The specific needs at any point in time can vary based on the life cycle of the plant, from germination through harvest.

• Prior experiments have seen unexpected water migration to the due to surface tension forces, and poor aeration of the soil.

• We are looking for simple, robust methods for advanced systems.
Significance of Fluids Management

Virtually all major systems involve fluids management (or mis-management)

Physical sciences research on the ISS provides the knowledge base for designing systems, ISS provides a platform to validate technologies for inclusion in flagship missions.
• Demonstrate ability to provide hydration and aeration to plant root zone throughout the plant life cycle from germination through harvest
• Demonstrate ability to provide hydration and aeration to plant root zone for single plant chambers or multiple plant production chambers
• Demonstrate ability to control liquid inventory via capillary forces within either in an open container and/or a container with semi-permeable covers
• Demonstrate an ability to provide sufficient hydration commensurate with plant growth and evapotranspiration rates
• Demonstrate ability to provide hydration and aeration to plant root zone in a geometry that can be utilized in both a normal and microgravity environment
• Demonstrate routine priming, startup, shutdown, steady and transient operation

PWM is a Technology Demonstration of recent advances in micro-g capillary fluidics research applied to plant growth systems
PWM Approach

Watering Schemes and Factors:
1. Soil
2. Hydroponics
3. Root Accommodation Zone
4. Parallel Hydroponic Trays
5. Capillary Based Degassing and Liquid Aeration
6. Humidified Root Zone

Test Facility:
• Maintenance Work Area (MWA) on ISS
• Crew Involvement
 o Setup
 o Priming
 o Adjusting Flow Rates
 o Dispose of hardware after use
• Data Analysis based on Downlinked Images
PWM-01: Soil

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Stand</td>
<td>Ultem (3D Printed SLA)</td>
</tr>
<tr>
<td>Test Cell</td>
<td>Accura 60 (3D Printed SLA)</td>
</tr>
<tr>
<td>Test Fluid</td>
<td>ISS potable water mixed with Kool Aid® Tropical Punch (from the ISS On-orbit food pantry)</td>
</tr>
<tr>
<td>Plant Simulant</td>
<td>Rayon Felt/Nylon String Composite</td>
</tr>
<tr>
<td>Soil Simulant</td>
<td>Arcilite / Magic Sand</td>
</tr>
<tr>
<td>Soil Retention Screen</td>
<td>Rayon Felt Plug</td>
</tr>
<tr>
<td>Fluid Reservoir</td>
<td>Accura 60 (3D Printed SLA)</td>
</tr>
<tr>
<td>Syringe</td>
<td>COTS Plastic, Luer</td>
</tr>
<tr>
<td>Fluid Lines</td>
<td>COTS Tygon</td>
</tr>
<tr>
<td>Fittings and Valves</td>
<td>COTS Plastic, Noncontact Pinch Style, Luer</td>
</tr>
</tbody>
</table>
PWM-02: Hydroponics

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Stand</td>
<td>Ultem (3D Printed SLA)</td>
</tr>
<tr>
<td>Test Cell and Lid</td>
<td>Accura 60 (3D Printed SLA)</td>
</tr>
<tr>
<td>Lid Clips</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Plant Clips</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Test Fluid</td>
<td>ISS potable water mixed with Kool Aid® Tropical Punch (from the ISS On-orbit food pantry)</td>
</tr>
<tr>
<td>Plant Simulants</td>
<td>Rayon Felt / Nylon String Composite</td>
</tr>
<tr>
<td>Pump</td>
<td>Peristaltic, Positive Displacement, from CSELS Experiment</td>
</tr>
<tr>
<td>Syringes</td>
<td>COTS Plastic, Luer</td>
</tr>
<tr>
<td>Fluid Lines</td>
<td>COTS Tygon</td>
</tr>
<tr>
<td>Fittings and Valves</td>
<td>COTS Plastic, Noncontact Pinch Style, Luer</td>
</tr>
</tbody>
</table>
Fluid/Soil Properties

- **PWM Soil & Hydroponics Test Fluid**
 - Water mixed with “Tropical Punch” red drink mix from ISS pantry
 - Sucralose sweetener included in drink mix
 - Kinematic viscosity: 1 CS
 - Benefits:
 - Flow visualization
 - Poorly wetting fluid (sweetened water)
 - Mixed solution similar to plant nutrient mix
 - Tox 0 – Approved by JSC toxicology and MSFC ECLSS groups

- **PWM Soil Media**
 - Arcillite
 - Commonly used as soil basis for prior NASA plant growth systems such as VEGGIE, PONDS, APH, etc.
 - Calcinated clay particles, highly wetting when dry, clumps when saturated
 - Magic Sand
 - Nonwetting hydrophobic media
 - Breathable soil in contrast to the arcillite
PWM Plant Simulants

Simulated taproot plant
- 4mm thick, uncompressed & washed rayon felt foliage, stem, and taproot
- Uncompressed nylon string as secondary wick for fibrous roots and germination stage
- Max “plant” volume (foliage/stem/roots): 53mL
- Infill wicking rate: 7.7 mL/hr – 155mL/hr
- Evaporation Rate 2 mL/hr – 7.7 mL/hr
- Characteristics based on "Outredgeous" red romaine lettuce plant from germination to harvest

Simulated fibrous root plant
- "germination" plant with throttled uptake
1. Collect hardware (including PWM kit, ISS-provided lighting, cameras, potable water, drink mix, and CSELS pump).
2. Assemble hardware on MWA. Start video recording.
3. Slowly prime the system with the test fluid and start the pump (hydroponics only).
4. Take images of the pump rate, shape of fluid in the test cell, and motion of plant roots, porous wicking gradient, saturation gradient, and bubble formation/occlusion at variable flow rates.
5. Drain the system and dispose of the hardware.
6. Downlink videos and still images for analysis.

Approximately 3 hours of crew time per experiment (3 soil, 1 hydroponics).

Soil demonstrations can be left overnight (untended) due to slower wicking rate.
Importance and Reason for ISS

Duration of microgravity test conditions:

• System prime and steady-state stability in complex micro-g geometry
• Allows establishment of steady pumped flow with evaporation on timescales that cannot be achieved in drop towers or aircraft.
• Crew tended experiment
 – Extra science potential for g-jitter stability response, bubble formation/occlusion/recovery

CSELS Experiment example of long-duration evaporation rate testing
• PWM is conceptually similar to Capillary Flow Experiments (CFE) and CSELS (Capillary Structures for Exploration Life Support), both led by the same PI
• PWM is a further demonstration of capillary methods for applied fluid control, potential path forward is known
• Reutilizing similar or identical hardware, flight-cert. COTS, task listable, same players from original experiments
• Both of these experiments yielded dozens of hours of extra crew time for extended science due to their simple nature
Theoretical Analysis – Porosity

• Water Content Θ_w and Air Content Θ_a

\[
\Theta_w = \frac{V_w}{V_{\text{total}}} \quad \Theta_a = \frac{V_a}{V_{\text{total}}}
\]

• Porosity n

\[
n = \frac{V_w + V_a}{V_{\text{total}}}
\]

• For reference:

\[
\Theta_{w,\text{arcillite}} \approx 0.50 \quad \Theta_{w,\text{magic sand}} \approx 0
\]
\[
\Theta_{a,\text{arcillite}} \approx 0.15 \quad \Theta_{a,\text{magic sand}} \approx 0.66
\]
\[
n_{\text{arcillite}} \approx 0.65 \quad n_{\text{magic sand}} \approx 0.66
\]
• Continuing to work on characterizing soil system...
• But hydroponics plant growth is the clear path forward for low-g systems!
• For known H_1 and H_2 the free surface profile can be determined by

$$h = H_i \left(1 - \left(1 - \left(\frac{H_2}{H_1}\right)^3\right)\frac{z}{L}\right)^{1/3}$$

• Flow Rate

$$Q = \frac{\sigma F_A H_i^3}{\mu 3 L} \frac{F_i (\sin \alpha)^2}{f} \left(1 - \left(\frac{H_2}{H_1}\right)^3\right)$$
Hydroponics Analysis

- Governing Equations based on ISS Capillary Corner Flow Experiment (~2013)
- Use Concus-Finn critical contact angle to control liquid position
- This can be expanded for parallel channels

- 4 Identified flow regimes:
 - Stable: Continuous liquid stream at outlet, $Q_{\text{max}} \sim 0.4 \text{ ml/s}$
 - Ingestion: Gas ingested at outlet
 - Embolism: Accumulation of liquid at inlet
 - Ejection: Liquid droplet ejection from channel
Ingestion
Embolism/Ejection
Key Questions and Impact on Advancing the Field

• Where are the **operational limits** for 1g vs low-g stability regimes for poorly wetting liquids such as contaminated/sugary water?

Hydroponics system regime map with a single taproot in 1g lab testing

Need: Providing plants with ready access to both air and water remains a significant issue. The lack of convective mixing has implications for the movement of water, oxygen and solutes through the root zone. Most plants returned from microgravity have experienced some degree of hypoxia stress or root zone solute stress.

Application: Long-term food production systems for missions to the Moon and Mars, as well as the immediate need for ISS food supplements to the crew diet. PWM will demonstrate the low-gravity role of surface tension, wetting, and system geometry to effectively replace the role of gravity in certain terrestrial plant growth systems.
Benefits/Spin-off Applications

• **Space:**
 – Increased confidence for capillarity as a method of containment (PWM is in open cabin air with removable lid)
 – Increased knowledge of flow regime maps for poorly wetting liquids, and ISS environment’s influence on evaporation rates
 – Potential to influence next generation of space food production systems for ISS, Moon, and Mars

• **Earth Benefit**
 – Optimization of water uptake, thermal balance, etc. has direct application to terrestrial plant growth systems
 – Scale models can easily be manufactured to demonstrate low-g fluid behavior in 1g environment
Future Plans

- **PWM-01 Soil and PWM-02 Hydroponics**
 - Currently on ISS, ops TBD?

- **PWM-03 Root Accommodation Zone**
 - Further Developed Hydroponics section with root growth channel

- **PWM-04 Parallel Hydroponic Trays**
 - Parallel hydroponics trays to address full system stability for multiple plants

- **PWM-03 & PWM-04 expected to launch on SpaceX CRS-21 next year**

- *Many thanks to the KSC Plant Biology Team: Gioia Massa, Oscar Monje, Ralph Fritsche, Tom Dreschel, and others*
Backup Charts
PWM Test Matrices

Soil (3 modules)

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>Test Loc Setup</th>
<th>Test Setup incl gather + video</th>
<th>Fill + still (Crew Time)</th>
<th>Beginning of Foliage Sat (hr) (no extra Crew Time)</th>
<th>Top Up Task List? (Crew Time)</th>
<th>Refill (Crew Time)</th>
<th>Battery Change (Crew Time)</th>
<th>Teardown + Stow (Crew Time)</th>
<th>Approx Fluid Volume Total 48 hr (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>0.5</td>
<td>1.5 hr</td>
<td>1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.25</td>
<td>1 hr</td>
<td>325/350</td>
</tr>
<tr>
<td>Medium</td>
<td>0.5</td>
<td>1.5 hr</td>
<td>1</td>
<td>3</td>
<td>n/a</td>
<td>n/a</td>
<td>0.25</td>
<td>1 hr</td>
<td>126 mL</td>
</tr>
<tr>
<td>Slow</td>
<td>0.5</td>
<td>1.5 hr</td>
<td>1</td>
<td>7</td>
<td>n/a</td>
<td>n/a</td>
<td>0.25</td>
<td>1 hr</td>
<td>126 mL</td>
</tr>
</tbody>
</table>

Hydroponics (1 module with several plant types over 2 days)

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>Number of Plants</th>
<th>Plant Position</th>
<th>Time (hr)</th>
<th>Note</th>
<th>Approx Max Fluid Volume Total per day (cut foliage) (mL)</th>
<th>Approx Max Fluid Volume Total per day (uncut foliage) (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>1</td>
<td>stable</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>PWM-H-C</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Stable</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>PWM-H-C</td>
<td>2</td>
<td>1, 2</td>
<td>1</td>
<td>stable</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>PWM-H-C</td>
<td>2</td>
<td>1, 2</td>
<td>0.5</td>
<td>Ingestion</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>PWM-H-F</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Stable</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>PWM-H-F</td>
<td>2</td>
<td>1, 2</td>
<td>1</td>
<td>Stable</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>PWM-H-F</td>
<td>3</td>
<td>1, 2, 3</td>
<td>1</td>
<td>Stable</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>PWM-H-F</td>
<td>3</td>
<td>1, 2, 3</td>
<td>0.5</td>
<td>Ingestion</td>
<td>120</td>
<td>250</td>
</tr>
</tbody>
</table>
• Fast-to-flight
 – During development, seemingly small issues can have a major impact on schedule
 – 3D printed model crack during assembly
 – However, quick turnaround from ATP to FHA (13 months) provides huge science payoff (increased TRL in relevant environment)
 – Lessons learned and downlinked data will inform PWM 3 & 4 designs, scheduled to launch to ISS on similarly quick schedule
• Design is stable for disturbances up to 10^{-2} g, most common perturbations are 10^{-4} g
• Stability: water will remain in *open container* test cell due to surface tension forces
• Numerical interface stability work is still underway
• Upscaling design is dependent on the g environment
• ISS cabin relative humidity and air temperature will be obtained post-experiment