NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The zonally averaged circulation of the middle atmosphereThe steady-state, zonally averaged circulation of the middle atmosphere (15-125 km) is studied with a quasigeostrophic, numerical model that explicitly includes a self-consistent calculation of solar radiative heating due to O2 and O3 absorption, Newtonian cooling, Rayleigh friction, tropopause boundary conditions based on climatological averages, and the effects of vertically propagating planetary waves. It is found that the direct, radiatively driven pole-to-pole circulation at solstice is sufficient to account for the cold summer mesopause and warm isothermal winter mesosphere with associated zonal jets of realistic magnitude. The climatological heat and momentum fluxes associated with planetary wavenumber 2 have a negligible effect on the mean circulation. With planetary wavenumber 1, no steady-state solution could be obtained due to the formation of easterlies and hence critical layers in the winter mesosphere. The radiative heating associated with secondary peaks in the O3 density at the mesopause could render the polar mesopause region convectively unstable.
Document ID
19780052269
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Schoeberl, M. R.
(Science Applications, Inc. McLean, Va., United States)
Strobel, D. F.
(U.S. Navy, Naval Research Laboratory, Washington D.C., United States)
Date Acquired
August 9, 2013
Publication Date
April 1, 1978
Publication Information
Publication: Journal of the Atmospheric Sciences
Volume: 35
Subject Category
Meteorology And Climatology
Accession Number
78A36178
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available