NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Fluid surface behavior in low gravity. Center discretionary fund no. 83-21Measurements of rotating equilibrium bubble shapes in the low-gravity environment of a free-falling aircraft are presented. Emphasis is placed on bubbles which intersect the container boundaries. These data are compared with theoretical profiles derived from Laplace's formula and are in good agreement with the measurements. Two types of instability are explored. The first occurs when the baffle spacing is too large for the bubble to intersect both the top and bottom boundaries. The second occurs when the hydrostatic pressure beneath a displaced free surface does not compensate for pressure change due to capillary forces. The interface shape depends on the contact angle, the radius of intersection with container, and the parameter F which is a measure of the relative importance of centrifugal force to surface tension. For isolated bubbles, F has a maximum value of 1/2. A further increase in F causes the bubble to break contact with the axis of rotation. For large values of F, the bubble becomes more cylindrical and the capillary rise occurs over a thinner layer so that the small radius of curvature can generate enough pressure drop to balance the increased hydrostatic contribution.
Document ID
19850019948
Acquisition Source
Legacy CDMS
Document Type
Technical Publication (TP)
Authors
Leslie, F.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Gans, R. F.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Schafer, C.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
September 5, 2013
Publication Date
June 1, 1985
Subject Category
Fluid Mechanics And Heat Transfer
Report/Patent Number
NAS 1.60:2486
NASA-TP-2486
Accession Number
85N28260
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available