NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteriaDissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.
Document ID
19850024405
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Fischer, U.
(Oldenburg Univ.)
Date Acquired
August 12, 2013
Publication Date
July 1, 1985
Publication Information
Publication: NASA, Washington The Global Sulfur Cycle
Subject Category
Life Sciences (General)
Accession Number
85N32718
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available