NTRS - NASA Technical Reports Server

Back to Results
New outlook on control of crystalline and chemical perfection during growth of siliconSignificant progress has been made in our understanding of the Czochralski crystal growth process with the realization that the incorporation of oxygen into silicon is directly related to the internal gettering capability of wafers during device fabrication. It was also recognized that the electronic properties exhibited by silicon during various stages of device fabrication were significantly affected by the thermal history of the silicon during the post-growth cool-down period. Turbulent melt convection, induced by unavoidable destabilizing thermal gradients, was found to interfere with homogeneous dopant (and oxygen) incorporation and to influence markedly the dynamics of nonequilibrium point defects in the solidified silicon matrix during the cool-down period. In view of the unavoidability of destabilizing thermal gradients in conventional crystal growth configurations, melt stabilization through the application of magnetic fields is generally considered a viable approach. Control of heat input to the melt through heat pipe systems, as used during growth of germanium, cannot be applied to industrial growth of silicon. Recent studies have shown that heat exchange systems located coaxially about a growing crystal can be used to stabilize and control not only heat transfer in the grown crystal, but also in the melt adjacent to the solidification interface.
Document ID
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Witt, A. F.
(Massachusetts Inst. of Tech. Cambridge, MA, United States)
Date Acquired
August 12, 2013
Publication Date
August 15, 1985
Publication Information
Publication: JPL Proceedings of the Flat-Plate Solar Array Project Workshop
Subject Category
Solid-State Physics
Accession Number
Distribution Limits
Work of the US Gov. Public Use Permitted.
No Preview Available