NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A micrometeoroid deceleration and capture experiment: Conceptual experiment design descriptionThe preliminary conceptual design for a cosmic dust collector is described. For the case of low Earth orbit (LEO), dust particles enter the collector through the collimator at a few volts negative potential due to charging in the ionosphere, at a velocity of 1 to 50 km/sec. The particles then pass through an electron stream and are charged to about 1 KV negative (regardless of incoming polarity). The 1 KV negatively charged particle then passes through three sensing grids coupled to charge sensitive preamps (CSP). The comparison of the two pulses provided by S(1) and S(2) are utilized by the microprocessor to determine the charge, q, on the particle (pulse amplitude) and its velocity, v (by time of flight). The third sensing grid, S(3), is kept at about 20 KV negative so that the dust particle will now be decelerated in passing from S(2) (zero potential) to S(3). S(3) is capacitively coupled to its CSP and the pulse from S(3) is utilized by the microprocessor to determine the particle's energy, E, and therefore its mass, m (again by time of flight) by comparison with the pulses from S(1) and S(2). The microprocessor can now precisely program the high-voltage switching network for the proper timing in the grounding of the successive deceleration grids. As determined by the microprocessor, each successive deceleration grid is grounded just after the dust particle passes, thus reducing the particle's energy by the amount q*100 KV at each stage. The microprocessor also determines at which stage the particle will fall below a certain critical energy where all remaining grids remain unswitched so that the particle will drift to the collector. The collector is kept at about 100V positive and is covered with gold foil to eliminate contamination and is removable for subsequent return to earth for detailed analysis.
Document ID
19860021133
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Wolfe, J. H.
(San Jose State Univ. Calif., United States)
Ballard, R. W.
(NASA Ames Research Center Moffett Field, CA, United States)
Carle, G. C.
(NASA Ames Research Center Moffett Field, CA, United States)
Bunch, T. E.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
August 12, 2013
Publication Date
January 1, 1986
Publication Information
Publication: Lunar and Planetary Inst. Trajectory Determinations and Collection of Micrometeoroids on the Space Station
Subject Category
Astrophysics
Accession Number
86N30605
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available