NTRS - NASA Technical Reports Server

Back to Results
Volatile/mobile trace elements in meteoritic, non-lunar basalts: Guides to Martian sample contentsA variety of genetic processes on or in extraterrestrial objects can be examined by study of volatile/mobile trace elements. Doubtless, considerable efforts will be expended on determining these elements in returned Martian samples. The purpose is to estimate levels of such elements expected to be present in returned Martian samples. Some ideas about Martian genesis were already advanced from the volatile/mobile element contents in SNC meteorites, assuming that Mars was their parent body. Even is Mars and the SNC meteorite parent body are identical, compositional ranges for returned Martian samples should exceed those of SNC meteorites. It is expected, therefore, that Martian samples returned from locations other than Polar regions will have indigenous volatile/mobile element contents within howardite-diogenite ranges. Elements with strong lithophile tendences may be more abundant, as they are in many lunar samples. Most of these elements should be at ppb levels except for Co, Ga, Zn, and Rb, which should lie at ppm levels. If Martian volcanism was accompanied by fumarolic emanations, it should be reflected in occasional huge enrichments of mobile trance elements, as in lunar meteorite Y 791197. During collection and transport Earthward, samples must be contained under conditions appropriate to ppb concentrations. Materials must be used that will not cause contamination which occurred during the Apollo program, where indium from seals contaminated many samples.
Document ID
Document Type
Conference Paper
Lipschutz, M. E. (Purdue Univ. West Lafayette, IN, United States)
Paul, R. L. (Purdue Univ. West Lafayette, IN, United States)
Date Acquired
September 5, 2013
Publication Date
January 1, 1988
Publication Information
Publication: Lunar and Planetary Inst., Workshop on Mars Sample Return Science
Subject Category
Funding Number(s)
Distribution Limits
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle19890008917Analytic PrimaryWorkshop on Mars Sample Return Science