NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodesHigh power density fuel cell systems for defense and civilian applications are being developed. Taking into consideration the main causes for efficiency losses (activation, mass transport and ohmic overpotentials) the only fuel cell systems capable of achieving high power densities are the ones with alkaline and solid polymer electrolyte. High power densities (0.8 W/sq cm at 0.8 V and 1 A/sq cm with H2 and O2 as reactants), were already used in NASA's Apollo and Space Shuttle flights as auxiliary power sources. Even higher power densities (4 W/sq cm - i.e., 8 A sq cm at 0.5 V) were reported by the USAF/International Fuel Cells in advanced versions of the alkaline system. High power densities (approximately 1 watt/sq cm) in solid polymer electrolyte fuel cells with ten times lower platinum loading in the electrodes (i.e., 0.4 mg/sq cm) were attained. It is now possible to reach a cell potential of 0.620 V at a current density of 2 A/sq cm and at a temperature of 95 C and pressure of 4/5 atm with H2/O2 as reactants. The slope of the linear region of the potential-current density plot for this case is 0.15 ohm-sq cm. With H2/air as reactants and under the same operating conditions, mass transport limitations are encountered at current densities above 1.4 A/sq cm. Thus, the cell potential at 1 A/sq cm with H2/air as reactants is less than that with H2/O2 as reactants by 40 mV, which is the expected value based on electrode kinetics of the oxygen reduction reaction, and at 2 A/sq cm with H2/air as reactant is less than the corresponding value with H2/O2 as reactants by 250 mV, which is due to the considerably greater mass transport limitations in the former case.
Document ID
19890013623
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Srinivasan, Supramaniam
(Texas A&M Univ. College Station, TX, United States)
Manko, David J.
(Texas A&M Univ. College Station, TX, United States)
Enayatullah, Mohammad
(Texas A&M Univ. College Station, TX, United States)
Appleby, A. John
(Texas A&M Univ. College Station, TX, United States)
Date Acquired
September 5, 2013
Publication Date
January 1, 1989
Publication Information
Publication: NASA, Lewis Research Center, Space Electrochemical Research and Technology Conference: Abstracts
Subject Category
Energy Production And Conversion
Accession Number
89N22994
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available