NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Advisory – Planned Maintenance: On Monday, July 15 at 9 PM Eastern the STI Compliance and Distribution Services will be performing planned maintenance on the STI Repository (NTRS) for approximately one hour. During this time users will not be able to access the STI Repository (NTRS).

Back to Results
Johnson Space Center CFD overviewRecent applications and development of CFD technology have focused on flow problems that are critically important to the operation and design of space flight vehicles. The main effort is spent on the Space Shuttle in order to provide an understanding of the cryogenic fluid in the duct connecting the External Tank and the Main Engines, the subsonic flow surrounding the Orbiter during crew egress maneuvers, the transonic aerodynamic forces on the Orbiter fuselage and wing, the high angle-of-attack abort flight, and the aerodynamic heating during entry. To provide in-depth analyses for such diverse problems within a timely schedule, matured panel codes and a state-of-the-art incompressible turbulent flow code were adapted. Collaboration with Ames Research Center has resulted in a Shuttle ascent aerodynamic code; and a viscous chemical nonequilibrium code is being developed for predicting Orbiter real-gas aerodynamics and finite-catalytic heating. The remaining activities are devoted to the prediction of the flow environment around the Aeroassist Flight Experiment vehicle at hypersonic speeds and high altitudes. A thermochemical nonequilibrium Navier-Stokes code has been developed on the basis of two- temperature and 11-species models for solving both the shock layer and near wake. After validating the code against wind-tunnel aerodynamic, pressure and heating data, the code is being used to supplement the ground test facilities in predicting a more realistic flight environment. CFD technology is being relied upon by other programs as well in the consideration of candidate configurations.
Document ID
19910001531
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Li, Chien P.
(NASA Lyndon B. Johnson Space Center Houston, TX, United States)
Date Acquired
September 6, 2013
Publication Date
September 1, 1989
Publication Information
Publication: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6
Subject Category
Aerodynamics
Accession Number
91N10844
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available