NTRS - NASA Technical Reports Server

Back to Results
Magma Electrolysis: An updateElectrolytic extraction of O2 from molten lunar soil is conceptually simple and thus a candidate process for producing O2 on the Moon. Possible container and electrode materials are being tested for durability in corrosive high-temperature silicate melts and looking for complications that might increase energy requirements. Gaseous oxygen is being produced by electrolysis of 1-2 gram quantities of silicate melts in spinel (MgAl2O4) crucibles; in these melts, spinel is a stable phase. The concentration of FeO was kept low because FeO decrease O2 production efficiency. Platinum electrodes were placed about 0.5 cm apart in the melt. The spinel crucible was still intact after 40 minutes of electrolysis, when the experiment was halted for examination. The Pt anode was also intact; its Pt was maintained in a dynamci state in which the anode was continuously oxidized but quickly reduced again by the silicate melt, inhibiting migration of Pt away from the anode. In melts with low concentrations of Al2O3 + SiO2 (2 wt percent), the energy of resistance heating was only approximately equal to 10 to 20 percent of the theoretical amount required to produce O2. In melts substantially more concentrated in Al2O3 + SiO2, higher melt viscosity resulted in frothing that, in the worst case, caused high enough melt resistivities to raise the energy requirements to nearly 10 times theoretical. Both Fe and Si are produced at the cathode; in iron-rich melts, a- and c-iron and molten ferrosilicon were observed. Production was also observed at the cathode of a previously unrecognized gas; which is not yet identified. The solubility of metallic species was measured in silicate melts. They are too low to reduce significantly the efficiency of O2 production.
Document ID
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Colson, Russell O.
(Washington Univ. Saint Louis, MO, United States)
Haskin, Larry A.
(Washington Univ. Saint Louis, MO, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1991
Publication Information
Publication: Arizona Univ., Resources of Near-Earth Space: Abstracts
Subject Category
Lunar And Planetary Exploration
Accession Number
Distribution Limits
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available