NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Photochemical reactions of cyanoacetylene and dicyanoacetylene: Possible processes in Titan's atmosphereTitan has an atmosphere which is subject to dramatic chemical evolution due mainly to the dramatic effect of the UV flux from the Sun. The energetic solar photons and other particles are converting the methane-nitrogen atmosphere into the unsaturated carbon compounds observed by the Voyager probes. These same solar photons are also converting some of these unsaturated reaction products into the aerosols observed in the atmosphere which obscure the view of the surface of Titan. In particular, the photochemical reactions of cyanoacetylene, dicyanoacetylene, acetylene and ethylene may result in the formation of the higher hydrocarbons and polymers which result in the aerosols observed in Titan's atmosphere. Polymers are the principal reaction products formed by irradiation of cyanoacetylene and dicyanoacetylene. Irradiation of cyanoacetylene with 185 nm of light also yields 1,3,5-tricyanobenzene while irradiation at 254 nm yields 1,2,4-tricyanobenzene and tetracyano cyclooctatetraenes. Photolyses of mixtures of cyanoacetylene and acetylene yields mono- and di- cyanobenzenes. The 1-Cyanocyclobutene is formed from the photochemical addition of cyanoacetylene with ethylene. The photolysis of dicyanoacetylene with acetylene yields 2,3-dicyano-1,3-butadiene and 1,2-dicyanobenzene. Tetracyano cyclooctatetraene products were also observed in the photolysis of mixtures of dicyanoacetylene and acetylene with 254 nm light. The 1,2-Dicyano cyclobutene is obtained from the photolysis dicyanoacetylene and ethylene. Reaction mechanisms will be proposed to explain the observed photoproducts.
Document ID
19920004391
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Ferris, J. P.
(Rensselaer Polytechnic Inst. Troy, NY, United States)
Guillemin, J. C.
(Rensselaer Polytechnic Inst. Troy, NY, United States)
Date Acquired
September 6, 2013
Publication Date
October 1, 1991
Publication Information
Publication: NASA, Washington, Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life
Subject Category
Space Biology
Accession Number
92N13609
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available