NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
Gas chromatographic concepts for the analysis of planetary atmospheresOver the last few years, new gas chromatographic (GC) concepts were developed for use on board spacecraft or any other restricted environments for determining the chemical composition of the atmosphere and surface material of various planetary bodies. Future NASA Missions include an entry probe that will be sent to Titan and various spacecraft that will land on Mars. In order to be able to properly respond to the mission science requirements and physical restrictions imposed on the instruments by these missions, GC analytical techniques are being developed. Some of these techniques include hardware and mathematical techniques that will improve GC sensitivity and increase the sampling rate of a GC descending through a planetary atmosphere. The technique of Multiplex Gas Chromatography (MGC) is an example of a technique that was studied in a simulated Titan atmosphere. In such an environment, the atmospheric pressure at instrument deployment is estimated to be a few torr. Thus, at such pressures, the small amount of sample that is acquired might not be enough to satisfy the detection requirements of the gas chromatograph. In MGC, many samples are pseudo-randomly introduced to the chromatograph without regard to elution of preceding components. The resulting data is then reduced using mathematical techniques such as cross-correlation of Fourier Transforms. Advantages realized from this technique include: improvement in detection limits of several orders of magnitude and increase in the number of analyses that can be conducted in a given period of time. Results proving the application of MGC at very low pressures emulating the same atmospheric pressures that a Titan Probe will encounter when the instruments are deployed are presented. The sample used contained hydrocarbons that are expected to be found in Titan's atmosphere. In addition, a new selective modulator was developed to monitor water under Martian atmospheric conditions. Since this modulator is selective only to water, the need for a GC column is eliminated. This results in further simplification of the instrument.
Document ID
19920004442
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Valentin, J. R.
(San Jose State Univ. CA., United States)
Cullers, D. K.
(NASA Ames Research Center Moffett Field, CA, United States)
Hall, K. W.
(NASA Ames Research Center Moffett Field, CA, United States)
Krekorian, R. L.
(NASA Ames Research Center Moffett Field, CA, United States)
Phillips, J. B.
(University of Southern Illinois Carbondale., United States)
Date Acquired
September 6, 2013
Publication Date
October 1, 1991
Publication Information
Publication: NASA, Washington, Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life
Subject Category
Inorganic And Physical Chemistry
Accession Number
92N13660
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available